-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathnbperf-chm.c
459 lines (428 loc) · 13 KB
/
nbperf-chm.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
/* $NetBSD: nbperf-chm.c,v 1.4 2021/01/07 16:03:08 joerg Exp $ */
/*-
* Copyright (c) 2009 The NetBSD Foundation, Inc.
* Copyright (c) 2022 Reini Urban
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Joerg Sonnenberger.
* Integer keys and more hashes were added by Reini Urban.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#if HAVE_NBTOOL_CONFIG_H
#include "nbtool_config.h"
#endif
#ifdef __FreeBSD__
#include <sys/cdefs.h>
__RCSID("$NetBSD: nbperf-chm.c,v 1.4 2021/01/07 16:03:08 joerg Exp $");
#endif
#include <err.h>
#include <inttypes.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <assert.h>
#include <math.h>
#include "nbperf.h"
#include "graph2.h"
/*
* A full description of the algorithm can be found in:
* "An optimal algorithm for generating minimal perfect hash functions"
* by Czech, Havas and Majewski in Information Processing Letters,
* 43(5):256-264, October 1992.
*/
/*
* The algorithm is based on random, acyclic graphs.
*
* Each edge in the represents a key. The vertices are the reminder of
* the hash function mod n. n = cm with c > 2, otherwise the probability
* of finding an acyclic graph is very low (for 2-graphs). The constant
* for 3-graphs is 1.24.
*
* After the hashing phase, the graph is checked for cycles.
* A cycle-free graph is either empty or has a vertex of degree 1.
* Removing the edge for this vertex doesn't change this property,
* so applying this recursively reduces the size of the graph.
* If the graph is empty at the end of the process, it was acyclic.
*
* The assignment step now sets g[i] := 0 and processes the edges
* in reverse order of removal. That ensures that at least one vertex
* is always unvisited and can be assigned.
*/
struct state {
struct SIZED(graph) graph;
uint32_t *g;
uint8_t *visited;
};
#if GRAPH_SIZE >= 3
static void
assign_nodes(struct state *state)
{
struct SIZED(edge) *e;
size_t i;
uint32_t e_idx, v0, v1, v2, g;
for (i = 0; i < state->graph.e; ++i) {
e_idx = state->graph.output_order[i];
e = &state->graph.edges[e_idx];
if (!state->visited[e->vertices[0]]) {
v0 = e->vertices[0];
v1 = e->vertices[1];
v2 = e->vertices[2];
} else if (!state->visited[e->vertices[1]]) {
v0 = e->vertices[1];
v1 = e->vertices[0];
v2 = e->vertices[2];
} else {
v0 = e->vertices[2];
v1 = e->vertices[0];
v2 = e->vertices[1];
}
g = e_idx - state->g[v1] - state->g[v2];
if (g >= state->graph.e) {
g += state->graph.e;
if (g >= state->graph.e)
g += state->graph.e;
}
state->g[v0] = g;
state->visited[v0] = 1;
state->visited[v1] = 1;
state->visited[v2] = 1;
}
}
#else
static void
assign_nodes(struct state *state)
{
struct SIZED(edge) *e;
size_t i;
uint32_t e_idx, v0, v1, g;
for (i = 0; i < state->graph.e; ++i) {
e_idx = state->graph.output_order[i];
e = &state->graph.edges[e_idx];
if (!state->visited[e->vertices[0]]) {
v0 = e->vertices[0];
v1 = e->vertices[1];
} else {
v0 = e->vertices[1];
v1 = e->vertices[0];
}
g = e_idx - state->g[v1];
if (g >= state->graph.e)
g += state->graph.e;
state->g[v0] = g;
state->visited[v0] = 1;
state->visited[v1] = 1;
}
}
#endif
static void
embed_data_string(struct nbperf *nbperf)
{
fprintf(nbperf->output, "%sconst char * const %s_keys[%" PRIu64 "] = {\n",
nbperf->static_hash ? "static " : "",
nbperf->hash_name, nbperf->n);
for (size_t i = 0; i < nbperf->n; i++) {
if (!i)
fprintf(nbperf->output, "\t");
if ((i + 1) % 4)
fprintf(nbperf->output, "\"%s\", ", nbperf->keys[i]);
else
fprintf(nbperf->output, "\"%s\",\t/* %lu */\n\t", nbperf->keys[i], i+1);
}
fprintf(nbperf->output, "};\n");
}
static void
embed_data_int(struct nbperf *nbperf, const char* hashtype)
{
fprintf(nbperf->output, "%sconst %s %s_keys[%" PRIu64 "] = {\n",
nbperf->static_hash ? "static " : "",
hashtype,
nbperf->hash_name, nbperf->n);
for (size_t i = 0; i < nbperf->n; i++) {
if (!i)
fprintf(nbperf->output, "\t");
if ((i + 1) % 10)
fprintf(nbperf->output, "%ld, ", (long)nbperf->keys[i]);
else
fprintf(nbperf->output, "%ld,\t/* %lu */\n\t",
(long)nbperf->keys[i], i+1);
}
fprintf(nbperf->output, "};\n");
}
static void
print_hash(struct nbperf *nbperf, struct state *state)
{
uint32_t i, per_line;
const char *g_type;
int g_width;
print_coda(nbperf);
if (nbperf->embed_data && !nbperf->intkeys)
fprintf(nbperf->output, "#include <string.h>\n");
if (nbperf->intkeys) {
#if GRAPH_SIZE >= 3
inthash4_addprint(nbperf);
#else
inthash_addprint(nbperf);
#endif
}
const char* hashtype = nbperf->n >= 4294967295U ? "uint64_t"
: !nbperf->hashes16 ? "uint32_t" : "uint16_t";
if (nbperf->embed_data) {
if (nbperf->intkeys)
embed_data_int(nbperf, hashtype);
else
embed_data_string(nbperf);
}
fprintf(nbperf->output, "%s%s\n",
nbperf->static_hash ? "static " : "", hashtype);
if (!nbperf->intkeys)
fprintf(nbperf->output,
"%s(const void * __restrict key, size_t keylen)\n",
nbperf->hash_name);
else
fprintf(nbperf->output, "%s(const %s key)\n",
nbperf->hash_name, hashtype);
fprintf(nbperf->output, "{\n");
if (state->graph.v >= 65536) {
g_type = "uint32_t";
g_width = 6;
per_line = 8;
} else if (state->graph.v >= 256) {
g_type = "uint16_t";
g_width = 4;
per_line = 8;
} else {
g_type = "uint8_t";
g_width = 2;
per_line = 10;
}
if (nbperf->embed_data)
fprintf(nbperf->output, "\t%s result;\n", g_type);
fprintf(nbperf->output, "\tstatic const %s g[%" PRId32 "] = {\n",
g_type, state->graph.v);
for (i = 0; i < state->graph.v; ++i) {
if (nbperf->intkeys)
fprintf(nbperf->output, "%s%*" PRIu32 ",%s",
(i % per_line == 0 ? "\t " : " "),
g_width, state->g[i],
(i % per_line == per_line - 1 ? "\n" : ""));
else
fprintf(nbperf->output, "%s0x%0*" PRIx32 ",%s",
(i % per_line == 0 ? "\t " : " "),
g_width, state->g[i],
(i % per_line == per_line - 1 ? "\n" : ""));
}
if (i % per_line != 0)
fprintf(nbperf->output, "\n\t};\n");
else
fprintf(nbperf->output, "\t};\n");
if (nbperf->hashes16) {
if (nbperf->hash_size == 2 && nbperf->intkeys)
fprintf(nbperf->output, "\tuint16_t h[%u];\n\n", 2);
else
fprintf(nbperf->output, "\tuint16_t h[%u];\n\n", nbperf->hash_size * 2);
}
else
fprintf(nbperf->output, "\tuint32_t h[%u];\n\n",
nbperf->hash_size);
(*nbperf->print_hash)(nbperf, "\t", "key", "keylen", "h");
if (nbperf->fastmod) {
if (nbperf->hashes16) {
fprintf(nbperf->output,
"\n\tconst uint32_t m = UINT32_C(0xFFFFFFFF) / %" PRIu16
" + 1;\n", state->graph.v);
fprintf(nbperf->output,
"\tconst uint32_t low0 = m * h[0];\n");
fprintf(nbperf->output,
"\tconst uint32_t low1 = m * h[1];\n");
#if GRAPH_SIZE >= 3
fprintf(nbperf->output,
"\tconst uint32_t low2 = m * h[2];\n");
#endif
fprintf(nbperf->output,
"\th[0] = (uint16_t)((((uint64_t)low0) * %" PRIu32
") >> 32);\n",
state->graph.v);
fprintf(nbperf->output,
"\th[1] = (uint16_t)((((uint64_t)low1) * %" PRIu32
") >> 32);\n",
state->graph.v);
#if GRAPH_SIZE >= 3
fprintf(nbperf->output,
"\th[2] = (uint16_t)((((uint64_t)low2) * %" PRIu32
") >> 32);\n",
state->graph.v);
#endif
} else {
fprintf(nbperf->output,
"\n\tconst uint64_t m = UINT64_C(0xFFFFFFFFFFFFFFFF) / %" PRIu32
" + 1;\n",
state->graph.v);
fprintf(nbperf->output,
"\tconst uint64_t low0 = m * h[0];\n");
fprintf(nbperf->output,
"\tconst uint64_t low1 = m * h[1];\n");
#if GRAPH_SIZE >= 3
fprintf(nbperf->output,
"\tconst uint64_t low2 = m * h[2];\n");
#endif
fprintf(nbperf->output,
"\th[0] = (uint32_t)((((__uint128_t)low0) * %" PRIu32
") >> 64);\n",
state->graph.v);
fprintf(nbperf->output,
"\th[1] = (uint32_t)((((__uint128_t)low1) * %" PRIu32
") >> 64);\n",
state->graph.v);
#if GRAPH_SIZE >= 3
fprintf(nbperf->output,
"\th[2] = (uint32_t)((((__uint128_t)low2) * %" PRIu32
") >> 64);\n",
state->graph.v);
#endif
}
} else {
fprintf(nbperf->output, "\n\th[0] = h[0] %% %" PRIu32 ";\n",
state->graph.v);
fprintf(nbperf->output, "\th[1] = h[1] %% %" PRIu32 ";\n",
state->graph.v);
#if GRAPH_SIZE >= 3
fprintf(nbperf->output, "\th[2] = h[2] %% %" PRIu32 ";\n",
state->graph.v);
#endif
}
if (state->graph.hash_fudge & 1)
fprintf(nbperf->output, "\th[1] ^= (h[0] == h[1]);\n");
#if GRAPH_SIZE >= 3
if (state->graph.hash_fudge & 2) {
fprintf(nbperf->output,
"\th[2] ^= (h[0] == h[2] || h[1] == h[2]);\n");
fprintf(nbperf->output,
"\th[2] ^= 2 * (h[0] == h[2] || h[1] == h[2]);\n");
}
fprintf(nbperf->output,
"\t%s (g[h[0]] + g[h[1]] + g[h[2]]) %% "
"%" PRIu32 ";\n", nbperf->embed_data ? "result =" : "return",
state->graph.e);
#else
fprintf(nbperf->output,
"\t%s (g[h[0]] + g[h[1]]) %% "
"%" PRIu32 ";\n", nbperf->embed_data ? "result =" : "return",
state->graph.e);
#endif
if (nbperf->embed_data) {
if (!nbperf->intkeys)
fprintf(nbperf->output, "\treturn (strcmp(%s_keys[result], key) == 0)"
" ? result : (%s)-1;\n",
nbperf->hash_name, hashtype);
else
fprintf(nbperf->output,
"\treturn (%s_keys[result] == key) ? result : (%s)-1;\n",
nbperf->hash_name, hashtype);
}
fprintf(nbperf->output, "}\n");
if (nbperf->map_output != NULL) {
for (i = 0; i < state->graph.e; ++i)
fprintf(nbperf->map_output, "%" PRIu32 "\n", i);
}
}
int
#if GRAPH_SIZE >= 3
chm3_compute(struct nbperf *nbperf)
#else
chm_compute(struct nbperf *nbperf)
#endif
{
struct state state;
int retval = -1;
uint32_t v, e, va;
if (nbperf->n < 1)
errx(1, "Not enough members, n < 1");
#if GRAPH_SIZE >= 3
const double min_c = 1.24;
if (nbperf->c == 0)
nbperf->c = min_c;
if (nbperf->c != -2 && nbperf->c < min_c)
errx(1, "The argument for option -c must be at least 1.24");
if (nbperf->hash_size < 3 && !nbperf->hashes16)
errx(1, "The hash function must generate at least 3 values");
#else
const double min_c = 2.0;
if (nbperf->c == 0)
nbperf->c = min_c;
if (nbperf->c != -2 && nbperf->c < min_c)
errx(1, "The argument for option -c must be at least 2");
if (nbperf->hash_size < 2)
errx(1, "The hash function must generate at least 2 values");
#endif
(*nbperf->seed_hash)(nbperf);
e = nbperf->n;
v = nbperf->c * nbperf->n;
/* With -c -2 prefer v as next power of two.
But with bigger sets the space overhead might be too much.
*/
if (nbperf->c == -2) {
v = 1 << (uint32_t)ceil(log2((double)nbperf->n));
nbperf->c = (v * 1.0) / nbperf->n;
// c might still be too small
while (nbperf->c < min_c) {
v *= 2;
nbperf->c = (v * 1.0) / nbperf->n;
}
}
if (v == min_c * nbperf->n)
++v;
#if GRAPH_SIZE >= 3
if (v < 8)
v = 8;
if (nbperf->allow_hash_fudging) // two more as reserve
va = (v + 2) | 3;
else
va = v;
#else
if (nbperf->allow_hash_fudging) // one more as reserve
va = (v + 1) | 1;
else
va = v;
#endif
state.g = calloc(v,sizeof(uint32_t));
state.visited = calloc(v, sizeof(uint8_t));
if (state.g == NULL || state.visited == NULL)
err(1, "malloc failed");
SIZED2(_setup)(&state.graph, v, e, va);
if (SIZED2(_hash)(nbperf, &state.graph))
goto failed;
if (SIZED2(_output_order)(&state.graph))
goto failed;
assign_nodes(&state);
print_hash(nbperf, &state);
retval = 0;
failed:
SIZED2(_free)(&state.graph);
free(state.g);
free(state.visited);
return retval;
}