|
| 1 | +//! Functions for reading and writing discriminants of multi-variant layouts (enums and generators). |
| 2 | +
|
| 3 | +use rustc_middle::ty::layout::{LayoutOf, PrimitiveExt}; |
| 4 | +use rustc_middle::{mir, ty}; |
| 5 | +use rustc_target::abi::{self, TagEncoding}; |
| 6 | +use rustc_target::abi::{VariantIdx, Variants}; |
| 7 | + |
| 8 | +use super::{ImmTy, InterpCx, InterpResult, Machine, OpTy, PlaceTy, Scalar}; |
| 9 | + |
| 10 | +impl<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> InterpCx<'mir, 'tcx, M> { |
| 11 | + /// Writes the discriminant of the given variant. |
| 12 | + #[instrument(skip(self), level = "trace")] |
| 13 | + pub fn write_discriminant( |
| 14 | + &mut self, |
| 15 | + variant_index: VariantIdx, |
| 16 | + dest: &PlaceTy<'tcx, M::Provenance>, |
| 17 | + ) -> InterpResult<'tcx> { |
| 18 | + // Layout computation excludes uninhabited variants from consideration |
| 19 | + // therefore there's no way to represent those variants in the given layout. |
| 20 | + // Essentially, uninhabited variants do not have a tag that corresponds to their |
| 21 | + // discriminant, so we cannot do anything here. |
| 22 | + // When evaluating we will always error before even getting here, but ConstProp 'executes' |
| 23 | + // dead code, so we cannot ICE here. |
| 24 | + if dest.layout.for_variant(self, variant_index).abi.is_uninhabited() { |
| 25 | + throw_ub!(UninhabitedEnumVariantWritten) |
| 26 | + } |
| 27 | + |
| 28 | + match dest.layout.variants { |
| 29 | + abi::Variants::Single { index } => { |
| 30 | + assert_eq!(index, variant_index); |
| 31 | + } |
| 32 | + abi::Variants::Multiple { |
| 33 | + tag_encoding: TagEncoding::Direct, |
| 34 | + tag: tag_layout, |
| 35 | + tag_field, |
| 36 | + .. |
| 37 | + } => { |
| 38 | + // No need to validate that the discriminant here because the |
| 39 | + // `TyAndLayout::for_variant()` call earlier already checks the variant is valid. |
| 40 | + |
| 41 | + let discr_val = |
| 42 | + dest.layout.ty.discriminant_for_variant(*self.tcx, variant_index).unwrap().val; |
| 43 | + |
| 44 | + // raw discriminants for enums are isize or bigger during |
| 45 | + // their computation, but the in-memory tag is the smallest possible |
| 46 | + // representation |
| 47 | + let size = tag_layout.size(self); |
| 48 | + let tag_val = size.truncate(discr_val); |
| 49 | + |
| 50 | + let tag_dest = self.place_field(dest, tag_field)?; |
| 51 | + self.write_scalar(Scalar::from_uint(tag_val, size), &tag_dest)?; |
| 52 | + } |
| 53 | + abi::Variants::Multiple { |
| 54 | + tag_encoding: |
| 55 | + TagEncoding::Niche { untagged_variant, ref niche_variants, niche_start }, |
| 56 | + tag: tag_layout, |
| 57 | + tag_field, |
| 58 | + .. |
| 59 | + } => { |
| 60 | + // No need to validate that the discriminant here because the |
| 61 | + // `TyAndLayout::for_variant()` call earlier already checks the variant is valid. |
| 62 | + |
| 63 | + if variant_index != untagged_variant { |
| 64 | + let variants_start = niche_variants.start().as_u32(); |
| 65 | + let variant_index_relative = variant_index |
| 66 | + .as_u32() |
| 67 | + .checked_sub(variants_start) |
| 68 | + .expect("overflow computing relative variant idx"); |
| 69 | + // We need to use machine arithmetic when taking into account `niche_start`: |
| 70 | + // tag_val = variant_index_relative + niche_start_val |
| 71 | + let tag_layout = self.layout_of(tag_layout.primitive().to_int_ty(*self.tcx))?; |
| 72 | + let niche_start_val = ImmTy::from_uint(niche_start, tag_layout); |
| 73 | + let variant_index_relative_val = |
| 74 | + ImmTy::from_uint(variant_index_relative, tag_layout); |
| 75 | + let tag_val = self.binary_op( |
| 76 | + mir::BinOp::Add, |
| 77 | + &variant_index_relative_val, |
| 78 | + &niche_start_val, |
| 79 | + )?; |
| 80 | + // Write result. |
| 81 | + let niche_dest = self.place_field(dest, tag_field)?; |
| 82 | + self.write_immediate(*tag_val, &niche_dest)?; |
| 83 | + } |
| 84 | + } |
| 85 | + } |
| 86 | + |
| 87 | + Ok(()) |
| 88 | + } |
| 89 | + |
| 90 | + /// Read discriminant, return the runtime value as well as the variant index. |
| 91 | + /// Can also legally be called on non-enums (e.g. through the discriminant_value intrinsic)! |
| 92 | + #[instrument(skip(self), level = "trace")] |
| 93 | + pub fn read_discriminant( |
| 94 | + &self, |
| 95 | + op: &OpTy<'tcx, M::Provenance>, |
| 96 | + ) -> InterpResult<'tcx, (Scalar<M::Provenance>, VariantIdx)> { |
| 97 | + trace!("read_discriminant_value {:#?}", op.layout); |
| 98 | + // Get type and layout of the discriminant. |
| 99 | + let discr_layout = self.layout_of(op.layout.ty.discriminant_ty(*self.tcx))?; |
| 100 | + trace!("discriminant type: {:?}", discr_layout.ty); |
| 101 | + |
| 102 | + // We use "discriminant" to refer to the value associated with a particular enum variant. |
| 103 | + // This is not to be confused with its "variant index", which is just determining its position in the |
| 104 | + // declared list of variants -- they can differ with explicitly assigned discriminants. |
| 105 | + // We use "tag" to refer to how the discriminant is encoded in memory, which can be either |
| 106 | + // straight-forward (`TagEncoding::Direct`) or with a niche (`TagEncoding::Niche`). |
| 107 | + let (tag_scalar_layout, tag_encoding, tag_field) = match op.layout.variants { |
| 108 | + Variants::Single { index } => { |
| 109 | + let discr = match op.layout.ty.discriminant_for_variant(*self.tcx, index) { |
| 110 | + Some(discr) => { |
| 111 | + // This type actually has discriminants. |
| 112 | + assert_eq!(discr.ty, discr_layout.ty); |
| 113 | + Scalar::from_uint(discr.val, discr_layout.size) |
| 114 | + } |
| 115 | + None => { |
| 116 | + // On a type without actual discriminants, variant is 0. |
| 117 | + assert_eq!(index.as_u32(), 0); |
| 118 | + Scalar::from_uint(index.as_u32(), discr_layout.size) |
| 119 | + } |
| 120 | + }; |
| 121 | + return Ok((discr, index)); |
| 122 | + } |
| 123 | + Variants::Multiple { tag, ref tag_encoding, tag_field, .. } => { |
| 124 | + (tag, tag_encoding, tag_field) |
| 125 | + } |
| 126 | + }; |
| 127 | + |
| 128 | + // There are *three* layouts that come into play here: |
| 129 | + // - The discriminant has a type for typechecking. This is `discr_layout`, and is used for |
| 130 | + // the `Scalar` we return. |
| 131 | + // - The tag (encoded discriminant) has layout `tag_layout`. This is always an integer type, |
| 132 | + // and used to interpret the value we read from the tag field. |
| 133 | + // For the return value, a cast to `discr_layout` is performed. |
| 134 | + // - The field storing the tag has a layout, which is very similar to `tag_layout` but |
| 135 | + // may be a pointer. This is `tag_val.layout`; we just use it for sanity checks. |
| 136 | + |
| 137 | + // Get layout for tag. |
| 138 | + let tag_layout = self.layout_of(tag_scalar_layout.primitive().to_int_ty(*self.tcx))?; |
| 139 | + |
| 140 | + // Read tag and sanity-check `tag_layout`. |
| 141 | + let tag_val = self.read_immediate(&self.operand_field(op, tag_field)?)?; |
| 142 | + assert_eq!(tag_layout.size, tag_val.layout.size); |
| 143 | + assert_eq!(tag_layout.abi.is_signed(), tag_val.layout.abi.is_signed()); |
| 144 | + trace!("tag value: {}", tag_val); |
| 145 | + |
| 146 | + // Figure out which discriminant and variant this corresponds to. |
| 147 | + Ok(match *tag_encoding { |
| 148 | + TagEncoding::Direct => { |
| 149 | + let scalar = tag_val.to_scalar(); |
| 150 | + // Generate a specific error if `tag_val` is not an integer. |
| 151 | + // (`tag_bits` itself is only used for error messages below.) |
| 152 | + let tag_bits = scalar |
| 153 | + .try_to_int() |
| 154 | + .map_err(|dbg_val| err_ub!(InvalidTag(dbg_val)))? |
| 155 | + .assert_bits(tag_layout.size); |
| 156 | + // Cast bits from tag layout to discriminant layout. |
| 157 | + // After the checks we did above, this cannot fail, as |
| 158 | + // discriminants are int-like. |
| 159 | + let discr_val = |
| 160 | + self.cast_from_int_like(scalar, tag_val.layout, discr_layout.ty).unwrap(); |
| 161 | + let discr_bits = discr_val.assert_bits(discr_layout.size); |
| 162 | + // Convert discriminant to variant index, and catch invalid discriminants. |
| 163 | + let index = match *op.layout.ty.kind() { |
| 164 | + ty::Adt(adt, _) => { |
| 165 | + adt.discriminants(*self.tcx).find(|(_, var)| var.val == discr_bits) |
| 166 | + } |
| 167 | + ty::Generator(def_id, substs, _) => { |
| 168 | + let substs = substs.as_generator(); |
| 169 | + substs |
| 170 | + .discriminants(def_id, *self.tcx) |
| 171 | + .find(|(_, var)| var.val == discr_bits) |
| 172 | + } |
| 173 | + _ => span_bug!(self.cur_span(), "tagged layout for non-adt non-generator"), |
| 174 | + } |
| 175 | + .ok_or_else(|| err_ub!(InvalidTag(Scalar::from_uint(tag_bits, tag_layout.size))))?; |
| 176 | + // Return the cast value, and the index. |
| 177 | + (discr_val, index.0) |
| 178 | + } |
| 179 | + TagEncoding::Niche { untagged_variant, ref niche_variants, niche_start } => { |
| 180 | + let tag_val = tag_val.to_scalar(); |
| 181 | + // Compute the variant this niche value/"tag" corresponds to. With niche layout, |
| 182 | + // discriminant (encoded in niche/tag) and variant index are the same. |
| 183 | + let variants_start = niche_variants.start().as_u32(); |
| 184 | + let variants_end = niche_variants.end().as_u32(); |
| 185 | + let variant = match tag_val.try_to_int() { |
| 186 | + Err(dbg_val) => { |
| 187 | + // So this is a pointer then, and casting to an int failed. |
| 188 | + // Can only happen during CTFE. |
| 189 | + // The niche must be just 0, and the ptr not null, then we know this is |
| 190 | + // okay. Everything else, we conservatively reject. |
| 191 | + let ptr_valid = niche_start == 0 |
| 192 | + && variants_start == variants_end |
| 193 | + && !self.scalar_may_be_null(tag_val)?; |
| 194 | + if !ptr_valid { |
| 195 | + throw_ub!(InvalidTag(dbg_val)) |
| 196 | + } |
| 197 | + untagged_variant |
| 198 | + } |
| 199 | + Ok(tag_bits) => { |
| 200 | + let tag_bits = tag_bits.assert_bits(tag_layout.size); |
| 201 | + // We need to use machine arithmetic to get the relative variant idx: |
| 202 | + // variant_index_relative = tag_val - niche_start_val |
| 203 | + let tag_val = ImmTy::from_uint(tag_bits, tag_layout); |
| 204 | + let niche_start_val = ImmTy::from_uint(niche_start, tag_layout); |
| 205 | + let variant_index_relative_val = |
| 206 | + self.binary_op(mir::BinOp::Sub, &tag_val, &niche_start_val)?; |
| 207 | + let variant_index_relative = |
| 208 | + variant_index_relative_val.to_scalar().assert_bits(tag_val.layout.size); |
| 209 | + // Check if this is in the range that indicates an actual discriminant. |
| 210 | + if variant_index_relative <= u128::from(variants_end - variants_start) { |
| 211 | + let variant_index_relative = u32::try_from(variant_index_relative) |
| 212 | + .expect("we checked that this fits into a u32"); |
| 213 | + // Then computing the absolute variant idx should not overflow any more. |
| 214 | + let variant_index = variants_start |
| 215 | + .checked_add(variant_index_relative) |
| 216 | + .expect("overflow computing absolute variant idx"); |
| 217 | + let variants_len = op |
| 218 | + .layout |
| 219 | + .ty |
| 220 | + .ty_adt_def() |
| 221 | + .expect("tagged layout for non adt") |
| 222 | + .variants() |
| 223 | + .len(); |
| 224 | + assert!(usize::try_from(variant_index).unwrap() < variants_len); |
| 225 | + VariantIdx::from_u32(variant_index) |
| 226 | + } else { |
| 227 | + untagged_variant |
| 228 | + } |
| 229 | + } |
| 230 | + }; |
| 231 | + // Compute the size of the scalar we need to return. |
| 232 | + // No need to cast, because the variant index directly serves as discriminant and is |
| 233 | + // encoded in the tag. |
| 234 | + (Scalar::from_uint(variant.as_u32(), discr_layout.size), variant) |
| 235 | + } |
| 236 | + }) |
| 237 | + } |
| 238 | +} |
0 commit comments