
Control Flow Guard for LLVM
Andrew Paverd <andrew.paverd@microsoft.com>

This document describes the technical design of Control Flow Guard (CFG) for the LLVM compiler

infrastructure, and the rationale for the various design choices.

Control Flow Guard shipped in the LLVM 10.0 release. This includes the dispatch mechanism for X86

(64-bit) targets, and the check mechanism for X86 (32-bit), ARM, and AArch64 targets. The Clang

frontend supports the __declspec(guard(nocf)) modifier to elide CFG checks on specific functions.

Relevant commits

• d157a9b: Add Windows Control Flow Guard checks (/guard:cf)

• bdd88b7: Add support for __declspec(guard(nocf))

Control Flow Guard background
Control Flow Guard (CFG) is an exploit mitigation designed to ensure control-flow integrity for

software running on Windows platforms. Specifically, in a CFG-enabled binary, runtime checks are

added to ensure that the target address of every indirect branch corresponds to the address of a

valid (i.e. address-taken) function. During compilation, the relative addresses of address-taken

functions are emitted as metadata. When the image is loaded, the loader uses this list to generate a

bitmap of addresses and marks the addresses that contain valid targets. On each indirect call, the

target address is checked against this bitmap, and an error is raised if the target is not valid.

Pre-existing functionality
LLVM already included basic functionality (D42592 and D50513) for identifying address-taken

functions and emitting the table of their addresses (i.e. the FID table), to facilitate linking with other

CFG-enabled objects. This functionality remains unchanged.

Overview of changes
The guiding principle underpinning all of these changes has been to match the behaviour of MSVC as

closely as possible.

The CFG checks on indirect function calls are primarily added by a new LLVM IR transform (the

CFGuard library). This is added to the X86, ARM, and AArch64 backends before instruction selection.

One new calling convention (CFGuard_Check) was required, with target-specific implementations

added to the relevant backends.

The primary rationale for this design is that most of the CFG functionality is target-independent, but

some target-specific options (e.g. register selection) are required. This design minimizes code

duplication across different targets and allows new targets to be easily added in the future by

defining the architecture-specific calling convention and adding the appropriate IR transform pass.

The following sections describe the individual components of this design:

https://docs.microsoft.com/en-us/windows/win32/secbp/pe-metadata#compiler-directives
https://github.com/llvm/llvm-project/commit/d157a9bc8ba1085cc4808c6941412322a7fd884e
https://github.com/llvm/llvm-project/commit/bdd88b7ed3956534a0a71b1ea2bc88c69d48f9b7
https://docs.microsoft.com/en-us/windows/win32/secbp/control-flow-guard
https://reviews.llvm.org/D42592
https://reviews.llvm.org/D50513
https://github.com/llvm/llvm-project/tree/master/llvm/lib/Transforms/CFGuard

CFGuard transform
This transform contains most of the functionality for adding CFG checks to indirect calls. It extends

FunctionPass because it operates on functions individually. It can be instantiated in either check or

dispatch mode, depending on the CFG mechanism required for the specific target, using

createCFGuardCheckPass() or createCFGuardDispatchPass().

The doInitialization() method checks that the module has the cfguard flag, sets up the prototypes for

the guard check and guard dispatch functions, and gets a reference to the relevant global symbol

(__guard_check_icall_fptr or __guard_dispatch_icall_fptr). This is called once per module.

The runOnFunction() method iterates over the basic blocks to identify indirect call instructions. The

CallBase superclass is used to identify Call, Invoke, and CallBr instructions. Depending on the

mechanism selected, each call instruction is passed to the insertCFGuardCheck(CallBase *) or

insertCFGuardDispatch(CallBase *) functions.

insertCFGuardCheck()
This function inserts a new call instruction immediately before the indirect call. The target of the

new call instruction is the __guard_check_icall_fptr global symbol, with the address of the target

function passed as the only argument. The new CFGuard_Check calling convention places this value

in an architecture-specific register as follows:

X86_32: Target address passed in ECX; check function preserves ECX and floating point registers.

Aarch64: Target address passed in X15; check function preserves registers X0-X8 and Q0-Q7.

ARM: Target address passed in R0; check function preserves floating point registers.

The check function has no return value (an error will be raised if the target is not valid).

For example, the following LLVM IR:

%func_ptr = alloca i32 ()*, align 8
store i32 ()* @target_func, i32 ()** %func_ptr, align 8
%0 = load i32 ()*, i32 ()** %func_ptr, align 8
%1 = call i32 %0()

is transformed to:

%func_ptr = alloca i32 ()*, align 8
store i32 ()* @target_func, i32 ()** %func_ptr, align 8
%0 = load i32 ()*, i32 ()** %func_ptr, align 8
%1 = load void (i8*)*, void (i8*)** @__guard_check_icall_fptr
%2 = bitcast i32 ()* %0 to i8*
call cfguard_checkcc void %1(i8* %2)
%3 = call i32 %0()

For example, the following X86 assembly code:

movl $_target_func, %eax
calll *%eax

is transformed to:

movl $_target_func, %ecx
calll *___guard_check_icall_fptr
calll *%ecx

insertCFGuardDispatch()
This function replaces the indirect call instruction with a call to the guard dispatch mechanism, via

the __guard_dispatch_icall_fptr global symbol. The __guard_dispatch_icall_fptr global symbol is

loaded and set as the target of the new call instruction. The original indirect call target is added as a

new type of operand bundle (cfguardtarget) to the new call.

The CFGuardTarget operand bundle is lowered to an ArgListEntry by the SelectionDagBuilder. Since

the dispatch mechanism is currently only used on 64-bit X86 targets, the CC_X86_Win64_C calling

convention has been modified to pass the CFGuardTarget parameter (if any) in register RAX. All

other call arguments are passes as usual.

If the dispatch mechanism becomes supported on other targets, the relevant calling conventions can

be similarly modified to pass the CFGuardTarget parameter in the appropriate register.

At runtime, the dispatch function checks that the target address is in the FID table and, if so, tail-calls

the target.

For example, the following LLVM IR:

%func_ptr = alloca i32 ()*, align 8
store i32 ()* @target_func, i32 ()** %func_ptr, align 8
%0 = load i32 ()*, i32 ()** %func_ptr, align 8
%1 = call i32 %0()

is transformed to:

%func_ptr = alloca i32 ()*, align 8
store i32 ()* @target_func, i32 ()** %func_ptr, align 8
%0 = load i32 ()*, i32 ()** %func_ptr, align 8
%1 = load i32 ()*, i32 ()** @__guard_dispatch_icall_fptr
%2 = call i32 %1() [“cfguardtarget”(i32 ()* %0)]

The following X86_64 assembly code:

leaq target_func(%rip), %rax
callq *%rax

is transformed to:

leaq target_func(%rip), %rax
callq *__guard_dispatch_icall_fptr(%rip)

Relevant files:

• llvm\lib\Transforms\CFGuard\CFGuard.cpp

• llvm\include\llvm\Transforms\CFGuard.h

https://github.com/llvm/llvm-project/blob/master/llvm/lib/Transforms/CFGuard/CFGuard.cpp
https://github.com/llvm/llvm-project/blob/master/llvm/include/llvm/Transforms/CFGuard.h

CFGuardLongJmp Pass
When linking with /guard:cf, link.exe switches to using a CFG-enabled version of longjmp. It

therefore expects to find a list of valid longjmp targets in the .gljmp section of each object file. This

pass iterates over all instructions in a MachineFunction to identify calls to setjmp. For each such call,

it inserts a new MCSymbol and adds this to the list of valid longjmp targets stored by each

MachineFunction.

Finally, code in the WinCFGuard AsmPrinterHandler writes the list of valid target symbols to the

.gljmp section.

Relevant files:

• llvm\lib\CodeGen\CFGuardLongjmp.cpp

• llvm\lib\CodeGen\AsmPrinter\WinCFGuard.cpp

Support for __declspec(guard(nocf))
Some uses cases (e.g. bug 44096) require the ability to omit CFG checks on specific functions. This is

achieved using the __declspec(guard(nocf)) modifier. This modifier has been added to Clang and is

implemented as a new function attribute (“guard_nocf”) in LLVM. CFG checks will not be added to

functions with the “guard_nocf” attribute.

Relevant files:

• clang/include/clang/Basic/Attr.td

• clang/lib/Sema/SemaDeclAttr.cpp

Clang and clang-cl integration
CFG is integrated into Clang using the -cfguard CC1 option. Alternatively, the -cfguard-no-checks CC1

option can be used to emit the FID table without inserting checks.

It is also integrated into the clang-cl compatibility layer, using the standard /guard:cf, /guard:cf-, and

/guard:cf,nochecks compiler flags.

Relevant files:

• clang/include/clang/Driver/CC1Options.td

• clang/lib/CodeGen/CodeGenModule.cpp

• clang/lib/Driver/ToolChains/Clang.cpp

• clang/lib/Driver/ToolChains/MSVC.cpp

https://github.com/llvm/llvm-project/blob/master/llvm/lib/CodeGen/CFGuardLongjmp.cpp
https://github.com/llvm/llvm-project/blob/master/llvm/lib/CodeGen/AsmPrinter/WinCFGuard.cpp
https://bugs.llvm.org/show_bug.cgi?id=44096
https://docs.microsoft.com/en-us/windows/win32/secbp/pe-metadata#compiler-directives
https://github.com/llvm/llvm-project/blob/master/clang/include/clang/Basic/Attr.td
https://github.com/llvm/llvm-project/blob/master/clang/lib/Sema/SemaDeclAttr.cpp
https://github.com/llvm/llvm-project/blob/master/clang/include/clang/Driver/CC1Options.td
https://github.com/llvm/llvm-project/blob/master/clang/lib/CodeGen/CodeGenModule.cpp
https://github.com/llvm/llvm-project/blob/master/clang/lib/Driver/ToolChains/Clang.cpp
https://github.com/llvm/llvm-project/blob/master/clang/lib/Driver/ToolChains/MSVC.cpp

Tests
The following tests are added for each supported architecture:

• Test that CFG checks are not added to functions with nocf_checks attribute

• Test that CFG checks are correctly added at -O0

• Test that CFG checks are correctly added in optimized code (common case)

• Test that CFG checks are correctly added on invoke instructions

• Test that Control Flow Guard preserves floating point arguments

• Test that Control Flow Guard checks are correctly added for tail calls

• Test that CFG checks are not added in modules with the cfguard-no-checks flag

• Test that longjmp targets are assigned labels and that these appear in .gljmp sections

• Test that Control Flow Guard checks are correctly added for x86_64 vector calls

• Test that Control Flow Guard checks are correctly added for x86 vector calls

• Test that the __declspec(guard(nocf)) modifier correctly adds the “guard_nocf” attribute

• Test that the __declspec(guard(nocf)) modifier can be places on either the function

declaration or definition

• Test that the __declspec(guard(nocf)) modifier is correctly preserved when inlining

• Test that the __declspec(guard(nocf)) modifier correctly adds the “guard_nocf” attribute on

override functions (C++ only)

Relevant files:

• llvm\test\CodeGen\X86\cfguard-checks.ll

• llvm\test\CodeGen\X86\cfguard-module-flag.ll

• llvm\test\CodeGen\X86\cfguard-x86-64-vectorcall.ll

• llvm\test\CodeGen\X86\cfguard-x86-vectorcall.ll

• llvm\test\CodeGen\AArch64\cfguard-checks.ll

• llvm\test\CodeGen\AArch64\cfguard-module-flag.ll

• llvm\test\CodeGen\ARM\cfguard-checks.ll

• llvm\test\CodeGen\ARM\cfguard-module-flag.ll

• llvm\test\CodeGen\WinCFGuard\cfguard.ll

• clang\test\CodeGen\guard_nocf.c

• clang\test\CodeGenCXX\guard_nocf.cpp

https://github.com/llvm/llvm-project/blob/master/llvm/test/CodeGen/X86/cfguard-checks.ll
https://github.com/llvm/llvm-project/blob/master/llvm/test/CodeGen/X86/cfguard-module-flag.ll
https://github.com/llvm/llvm-project/blob/master/llvm/test/CodeGen/X86/cfguard-x86-64-vectorcall.ll
https://github.com/llvm/llvm-project/blob/master/llvm/test/CodeGen/X86/cfguard-x86-vectorcall.ll
https://github.com/llvm/llvm-project/blob/master/llvm/test/CodeGen/AArch64/cfguard-checks.ll
https://github.com/llvm/llvm-project/blob/master/llvm/test/CodeGen/AArch64/cfguard-module-flag.ll
https://github.com/llvm/llvm-project/blob/master/llvm/test/CodeGen/ARM/cfguard-checks.ll
https://github.com/llvm/llvm-project/blob/master/llvm/test/CodeGen/ARM/cfguard-module-flag.ll
https://github.com/llvm/llvm-project/blob/master/llvm/test/CodeGen/WinCFGuard/cfguard.ll
https://github.com/llvm/llvm-project/blob/master/clang/test/CodeGen/guard_nocf.c
https://github.com/llvm/llvm-project/blob/master/clang/test/CodeGenCXX/guard_nocf.cpp

