-
Notifications
You must be signed in to change notification settings - Fork 0
/
fadaly_2020_plot_reproduction.nb
12033 lines (11972 loc) · 654 KB
/
fadaly_2020_plot_reproduction.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 12.1' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 669062, 12025]
NotebookOptionsPosition[ 664588, 11956]
NotebookOutlinePosition[ 664983, 11972]
CellTagsIndexPosition[ 664940, 11969]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell["Ryan Hill (rjh324@cornell.edu)", "Text",
CellChangeTimes->{{3.797956873485427*^9, 3.797956928306942*^9}, {
3.797957375832656*^9, 3.797957445878281*^9}, {3.797958044132086*^9,
3.797958044493355*^9}},ExpressionUUID->"deb027ea-464c-417c-b33f-\
57c73263d7bb"],
Cell[CellGroupData[{
Cell["Tight Binding Model", "Subsection",
CellChangeTimes->{{3.79795697379716*^9,
3.797956977304708*^9}},ExpressionUUID->"51ced85c-ef28-4347-820b-\
738bcd69dd45"],
Cell[BoxData[
RowBox[{
RowBox[{"(*",
RowBox[{"Material", " ", "properties"}], "*)"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"SiVals", " ", "=", " ",
RowBox[{"{",
RowBox[{
RowBox[{"Esa", "\[Rule]",
RowBox[{"-", "4.2"}]}], ",", " ",
RowBox[{"Epa", "\[Rule]", "1.715"}], ",",
RowBox[{"Esc", "\[Rule]",
RowBox[{"-", "4.2"}]}], ",", " ",
RowBox[{"Epc", "\[Rule]", "1.715"}], ",",
RowBox[{"Essa", "\[Rule]", "6.685"}], ",", " ",
RowBox[{"Essc", "\[Rule]", "6.685"}], ",", " ",
RowBox[{"Vss", "\[Rule]",
RowBox[{"-", "8.3"}]}], ",", " ",
RowBox[{"Vxx", "\[Rule]", "1.715"}], ",", " ",
RowBox[{"Vxy", "\[Rule]", "4.575"}], ",", " ",
RowBox[{"Vsapc", "\[Rule]", "5.7292"}], ",", " ",
RowBox[{"Vpasc", "\[Rule]", "5.7292"}], ",", " ",
RowBox[{"Vssapc", "\[Rule]", "5.3749"}], ",", " ",
RowBox[{"Vpassc", "\[Rule]", "5.3749"}], ",", " ",
RowBox[{"Vssss", "\[Rule]", "0"}], ",",
RowBox[{"aL", "\[Rule]",
RowBox[{"5.431", "*",
RowBox[{"10", "^",
RowBox[{"-", "10"}]}]}]}]}], "}"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"GeVals", " ", "=", " ",
RowBox[{"{",
RowBox[{
RowBox[{"Esa", "\[Rule]",
RowBox[{"-", "5.88"}]}], ",", " ",
RowBox[{"Epa", "\[Rule]", "1.61"}], ",",
RowBox[{"Esc", "\[Rule]",
RowBox[{"-", "5.88"}]}], ",", " ",
RowBox[{"Epc", "\[Rule]", "1.61"}], ",",
RowBox[{"Essa", "\[Rule]", "6.39"}], ",", " ",
RowBox[{"Essc", "\[Rule]", "6.39"}], ",", " ",
RowBox[{"Vss", "\[Rule]",
RowBox[{"-", "6.78"}]}], ",", " ",
RowBox[{"Vxx", "\[Rule]", "1.61"}], ",", " ",
RowBox[{"Vxy", "\[Rule]", "4.9"}], ",", " ",
RowBox[{"Vsapc", "\[Rule]", "5.4649"}], ",", " ",
RowBox[{"Vpasc", "\[Rule]", "5.4649"}], ",", " ",
RowBox[{"Vssapc", "\[Rule]", "5.2191"}], ",", " ",
RowBox[{"Vpassc", "\[Rule]", "5.2191"}], ",", " ",
RowBox[{"Vssss", "\[Rule]", "0"}], ",",
RowBox[{"aL", "\[Rule]",
RowBox[{"5.658", "*",
RowBox[{"10", "^",
RowBox[{"-", "10"}]}]}]}]}], "}"}]}], ";"}]}]}]], "Input",
CellChangeTimes->{{3.79778057677011*^9, 3.797780582081634*^9}, {
3.7977806126607733`*^9, 3.797780823325416*^9}, {3.797780868141349*^9,
3.7977810365523663`*^9}, {3.79795693509039*^9,
3.7979569512446547`*^9}},ExpressionUUID->"f3962d97-1058-4a65-8324-\
97bc3dbd9e46"],
Cell[BoxData[
RowBox[{
RowBox[{"(*",
RowBox[{"Matrix", " ", "Elements"}], "*)"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"g0", "[", "k_", "]"}], ":=",
RowBox[{
RowBox[{
RowBox[{"Cos", "[",
RowBox[{
RowBox[{"k", "[",
RowBox[{"[", "1", "]"}], "]"}], "*",
RowBox[{"aL", "/", "4"}]}], "]"}], "*",
RowBox[{"Cos", "[",
RowBox[{
RowBox[{"k", "[",
RowBox[{"[", "2", "]"}], "]"}], "*",
RowBox[{"aL", "/", "4"}]}], "]"}], "*",
RowBox[{"Cos", "[",
RowBox[{
RowBox[{"k", "[",
RowBox[{"[", "3", "]"}], "]"}], "*",
RowBox[{"aL", "/", "4"}]}], "]"}]}], "-",
RowBox[{"\[ImaginaryI]", "*",
RowBox[{"Sin", "[",
RowBox[{
RowBox[{"k", "[",
RowBox[{"[", "1", "]"}], "]"}], "*",
RowBox[{"aL", "/", "4"}]}], "]"}], "*",
RowBox[{"Sin", "[",
RowBox[{
RowBox[{"k", "[",
RowBox[{"[", "2", "]"}], "]"}], "*",
RowBox[{"aL", "/", "4"}]}], "]"}], "*",
RowBox[{"Sin", "[",
RowBox[{
RowBox[{"k", "[",
RowBox[{"[", "3", "]"}], "]"}], "*",
RowBox[{"aL", "/", "4"}]}], "]"}]}]}]}], ";"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"g1", "[", "k_", "]"}], ":=",
RowBox[{
RowBox[{
RowBox[{"-",
RowBox[{"Cos", "[",
RowBox[{
RowBox[{"k", "[",
RowBox[{"[", "1", "]"}], "]"}], "*",
RowBox[{"aL", "/", "4"}]}], "]"}]}], "*",
RowBox[{"Sin", "[",
RowBox[{
RowBox[{"k", "[",
RowBox[{"[", "2", "]"}], "]"}], "*",
RowBox[{"aL", "/", "4"}]}], "]"}], "*",
RowBox[{"Sin", "[",
RowBox[{
RowBox[{"k", "[",
RowBox[{"[", "3", "]"}], "]"}], "*",
RowBox[{"aL", "/", "4"}]}], "]"}]}], "+",
RowBox[{"\[ImaginaryI]", "*",
RowBox[{"Sin", "[",
RowBox[{
RowBox[{"k", "[",
RowBox[{"[", "1", "]"}], "]"}], "*",
RowBox[{"aL", "/", "4"}]}], "]"}], "*",
RowBox[{"Cos", "[",
RowBox[{
RowBox[{"k", "[",
RowBox[{"[", "2", "]"}], "]"}], "*",
RowBox[{"aL", "/", "4"}]}], "]"}], "*",
RowBox[{"Cos", "[",
RowBox[{
RowBox[{"k", "[",
RowBox[{"[", "3", "]"}], "]"}], "*",
RowBox[{"aL", "/", "4"}]}], "]"}]}]}]}], ";"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"g2", "[", "k_", "]"}], ":=",
RowBox[{
RowBox[{
RowBox[{"-",
RowBox[{"Sin", "[",
RowBox[{
RowBox[{"k", "[",
RowBox[{"[", "1", "]"}], "]"}], "*",
RowBox[{"aL", "/", "4"}]}], "]"}]}], "*",
RowBox[{"Cos", "[",
RowBox[{
RowBox[{"k", "[",
RowBox[{"[", "2", "]"}], "]"}], "*",
RowBox[{"aL", "/", "4"}]}], "]"}], "*",
RowBox[{"Sin", "[",
RowBox[{
RowBox[{"k", "[",
RowBox[{"[", "3", "]"}], "]"}], "*",
RowBox[{"aL", "/", "4"}]}], "]"}]}], "+",
RowBox[{"\[ImaginaryI]", "*",
RowBox[{"Cos", "[",
RowBox[{
RowBox[{"k", "[",
RowBox[{"[", "1", "]"}], "]"}], "*",
RowBox[{"aL", "/", "4"}]}], "]"}], "*",
RowBox[{"Sin", "[",
RowBox[{
RowBox[{"k", "[",
RowBox[{"[", "2", "]"}], "]"}], "*",
RowBox[{"aL", "/", "4"}]}], "]"}], "*",
RowBox[{"Cos", "[",
RowBox[{
RowBox[{"k", "[",
RowBox[{"[", "3", "]"}], "]"}], "*",
RowBox[{"aL", "/", "4"}]}], "]"}]}]}]}], ";"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"g3", "[", "k_", "]"}], ":=",
RowBox[{
RowBox[{
RowBox[{"-",
RowBox[{"Sin", "[",
RowBox[{
RowBox[{"k", "[",
RowBox[{"[", "1", "]"}], "]"}], "*",
RowBox[{"aL", "/", "4"}]}], "]"}]}], "*",
RowBox[{"Sin", "[",
RowBox[{
RowBox[{"k", "[",
RowBox[{"[", "2", "]"}], "]"}], "*",
RowBox[{"aL", "/", "4"}]}], "]"}], "*",
RowBox[{"Cos", "[",
RowBox[{
RowBox[{"k", "[",
RowBox[{"[", "3", "]"}], "]"}], "*",
RowBox[{"aL", "/", "4"}]}], "]"}]}], "+",
RowBox[{"\[ImaginaryI]", "*",
RowBox[{"Cos", "[",
RowBox[{
RowBox[{"k", "[",
RowBox[{"[", "1", "]"}], "]"}], "*",
RowBox[{"aL", "/", "4"}]}], "]"}], "*",
RowBox[{"Cos", "[",
RowBox[{
RowBox[{"k", "[",
RowBox[{"[", "2", "]"}], "]"}], "*",
RowBox[{"aL", "/", "4"}]}], "]"}], "*",
RowBox[{"Sin", "[",
RowBox[{
RowBox[{"k", "[",
RowBox[{"[", "3", "]"}], "]"}], "*",
RowBox[{"aL", "/", "4"}]}], "]"}]}]}]}], ";"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"g0s", "[", "k_", "]"}], ":=",
RowBox[{"Conjugate", "[",
RowBox[{"g0", "[", "k", "]"}], "]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"g1s", "[", "k_", "]"}], ":=",
RowBox[{"Conjugate", "[",
RowBox[{"g1", "[", "k", "]"}], "]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"g2s", "[", "k_", "]"}], ":=",
RowBox[{"Conjugate", "[",
RowBox[{"g2", "[", "k", "]"}], "]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"g3s", "[", "k_", "]"}], ":=",
RowBox[{"Conjugate", "[",
RowBox[{"g3", "[", "k", "]"}], "]"}]}], ";"}],
"\[IndentingNewLine]"}]}]], "Input",
CellChangeTimes->{{3.7977810630696373`*^9, 3.797781208680098*^9}, {
3.797781242172082*^9, 3.797781285159981*^9}, {3.797781316564372*^9,
3.797781626641156*^9}, {3.7979570497431307`*^9,
3.7979570600642157`*^9}},ExpressionUUID->"a9c28bc8-060a-465f-942d-\
293925048ebc"],
Cell[BoxData[
RowBox[{
RowBox[{"(*", "Hamiltonian", "*)"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"H", "[", "k_", "]"}], ":=",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"Esa", ",",
RowBox[{"Vss", "*",
RowBox[{"g0", "[", "k", "]"}]}], ",", "0", ",", "0", ",", "0", ",",
RowBox[{"Vsapc", "*",
RowBox[{"g1", "[", "k", "]"}]}], ",",
RowBox[{"Vsapc", "*",
RowBox[{"g2", "[", "k", "]"}]}], ",",
RowBox[{"Vsapc", "*",
RowBox[{"g3", "[", "k", "]"}]}], ",", "0", ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"Vss", "*",
RowBox[{"g0s", "[", "k", "]"}]}], ",", "Esc", ",",
RowBox[{
RowBox[{"-", "Vpasc"}], "*",
RowBox[{"g1s", "[", "k", "]"}]}], ",",
RowBox[{
RowBox[{"-", "Vpasc"}], "*",
RowBox[{"g2s", "[", "k", "]"}]}], ",",
RowBox[{
RowBox[{"-", "Vpasc"}], "*",
RowBox[{"g3s", "[", "k", "]"}]}], ",", "0", ",", "0", ",", "0", ",",
"0", ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",",
RowBox[{
RowBox[{"-", "Vpasc"}], "*",
RowBox[{"g1", "[", "k", "]"}]}], ",", "Epa", ",", "0", ",", "0", ",",
RowBox[{"Vxx", "*",
RowBox[{"g0", "[", "k", "]"}]}], ",",
RowBox[{"Vxy", "*",
RowBox[{"g3", "[", "k", "]"}]}], ",",
RowBox[{"Vxy", "*",
RowBox[{"g2", "[", "k", "]"}]}], ",", "0", ",",
RowBox[{
RowBox[{"-", "Vpassc"}], "*",
RowBox[{"g1", "[", "k", "]"}]}]}], "}"}], ",", "\[IndentingNewLine]",
RowBox[{"{",
RowBox[{"0", ",",
RowBox[{
RowBox[{"-", "Vpasc"}], "*",
RowBox[{"g2", "[", "k", "]"}]}], ",", "0", ",", "Epa", ",", "0", ",",
RowBox[{"Vxy", "*",
RowBox[{"g3", "[", "k", "]"}]}], ",",
RowBox[{"Vxx", "*",
RowBox[{"g0", "[", "k", "]"}]}], ",",
RowBox[{"Vxy", "*",
RowBox[{"g1", "[", "k", "]"}]}], ",", "0", ",",
RowBox[{
RowBox[{"-", "Vpassc"}], "*",
RowBox[{"g2", "[", "k", "]"}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",",
RowBox[{
RowBox[{"-", "Vpasc"}], "*",
RowBox[{"g3", "[", "k", "]"}]}], ",", "0", ",", "0", ",", "Epa", ",",
RowBox[{"Vxy", "*",
RowBox[{"g2", "[", "k", "]"}]}], ",",
RowBox[{"Vxy", "*",
RowBox[{"g1", "[", "k", "]"}]}], ",",
RowBox[{"Vxx", "*",
RowBox[{"g0", "[", "k", "]"}]}], ",", "0", ",",
RowBox[{
RowBox[{"-", "Vpassc"}], "*",
RowBox[{"g3", "[", "k", "]"}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"Vsapc", "*",
RowBox[{"g1s", "[", "k", "]"}]}], ",", "0", ",",
RowBox[{"Vxx", "*",
RowBox[{"g0s", "[", "k", "]"}]}], ",",
RowBox[{"Vxy", "*",
RowBox[{"g3s", "[", "k", "]"}]}], ",",
RowBox[{"Vxy", "*",
RowBox[{"g2s", "[", "k", "]"}]}], ",", "Epc", ",", "0", ",", "0",
",",
RowBox[{"Vssapc", "*",
RowBox[{"g1", "[", "k", "]"}]}], ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"Vsapc", "*",
RowBox[{"g2s", "[", "k", "]"}]}], ",", "0", ",",
RowBox[{"Vxy", "*",
RowBox[{"g3s", "[", "k", "]"}]}], ",",
RowBox[{"Vxx", "*",
RowBox[{"g0s", "[", "k", "]"}]}], ",",
RowBox[{"Vxy", "*",
RowBox[{"g1s", "[", "k", "]"}]}], ",", "0", ",", "Epc", ",", "0",
",",
RowBox[{"Vssapc", "*",
RowBox[{"g2", "[", "k", "]"}]}], ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"Vsapc", "*",
RowBox[{"g3s", "[", "k", "]"}]}], ",", "0", ",",
RowBox[{"Vxy", "*",
RowBox[{"g2s", "[", "k", "]"}]}], ",",
RowBox[{"Vxy", "*",
RowBox[{"g1s", "[", "k", "]"}]}], ",",
RowBox[{"Vxx", "*",
RowBox[{"g0s", "[", "k", "]"}]}], ",", "0", ",", "0", ",", "Epc",
",",
RowBox[{"Vssapc", "*",
RowBox[{"g3", "[", "k", "]"}]}], ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",", "0", ",", "0", ",", "0", ",", "0", ",",
RowBox[{"Vssapc", "*",
RowBox[{"g1s", "[", "k", "]"}]}], ",",
RowBox[{"Vssapc", "*",
RowBox[{"g2s", "[", "k", "]"}]}], ",",
RowBox[{"Vssapc", "*",
RowBox[{"g3s", "[", "k", "]"}]}], ",", "Essa", ",",
RowBox[{"Vssss", "*",
RowBox[{"g0", "[", "k", "]"}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",", "0", ",",
RowBox[{
RowBox[{"-", "Vpassc"}], "*",
RowBox[{"g1s", "[", "k", "]"}]}], ",",
RowBox[{
RowBox[{"-", "Vpassc"}], "*",
RowBox[{"g2s", "[", "k", "]"}]}], ",",
RowBox[{
RowBox[{"-", "Vpassc"}], "*",
RowBox[{"g3s", "[", "k", "]"}]}], ",", "0", ",", "0", ",", "0", ",",
RowBox[{"Vssss", "*",
RowBox[{"g0s", "[", "k", "]"}]}], ",", "Essc"}], "}"}]}], "}"}]}],
";"}]}]], "Input",
CellChangeTimes->{{3.797781676483453*^9, 3.797781713370502*^9}, {
3.797781881219247*^9, 3.7977820444504128`*^9}, {3.79778207791115*^9,
3.79778248271843*^9}, {3.797957041187875*^9,
3.7979570426095552`*^9}},ExpressionUUID->"9dcae1e0-73b3-48e1-95d7-\
fa1ea7df6dc1"],
Cell[BoxData[
RowBox[{
RowBox[{"(*",
RowBox[{
"Lattice", " ", "and", " ", "reciprocal", " ", "lattice", " ", "vectors"}],
"*)"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"a1", "=",
RowBox[{"aL", "*",
RowBox[{"{",
RowBox[{
RowBox[{"1", "/", "2"}], ",",
RowBox[{"1", "/", "2"}], ",", "0"}], "}"}]}]}], ";"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{"a2", "=",
RowBox[{"aL", "*",
RowBox[{"{",
RowBox[{
RowBox[{"1", "/", "2"}], ",", "0", ",",
RowBox[{"1", "/", "2"}]}], "}"}]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"a3", "=",
RowBox[{"aL", "*",
RowBox[{"{",
RowBox[{"0", ",",
RowBox[{"1", "/", "2"}], ",",
RowBox[{"1", "/", "2"}]}], "}"}]}]}], ";"}], "\[IndentingNewLine]",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"b1", "=",
RowBox[{"2", "*", "\[Pi]", "*",
RowBox[{"(",
FractionBox[
RowBox[{"a2", "\[Cross]", "a3"}],
RowBox[{"a1", ".",
RowBox[{"(",
RowBox[{"a2", "\[Cross]", "a3"}], ")"}]}]], ")"}]}]}], ";"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{"b2", "=",
RowBox[{"2", "*", "\[Pi]", "*",
RowBox[{"(",
FractionBox[
RowBox[{"a3", "\[Cross]", "a1"}],
RowBox[{"a2", ".",
RowBox[{"(",
RowBox[{"a3", "\[Cross]", "a1"}], ")"}]}]], ")"}]}]}], ";"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{"b3", "=",
RowBox[{"2", "*", "\[Pi]", "*",
RowBox[{"(",
FractionBox[
RowBox[{"a1", "\[Cross]", "a2"}],
RowBox[{"a3", ".",
RowBox[{"(",
RowBox[{"a1", "\[Cross]", "a2"}], ")"}]}]], ")"}]}]}],
";"}]}]}]], "Input",
CellChangeTimes->{{3.797782521734376*^9, 3.797782745980674*^9}, {
3.797956997361302*^9, 3.7979570007808228`*^9}, {3.79795707446554*^9,
3.7979570749886208`*^9}},ExpressionUUID->"186c9957-119f-4eb2-80e2-\
cdd3c624283f"],
Cell[BoxData[
RowBox[{
RowBox[{"(*",
RowBox[{
RowBox[{"k", "-",
RowBox[{"space", " ",
RowBox[{"path", ":", " ", "X"}]}]}], "\[Rule]", " ",
RowBox[{"\[CapitalGamma]", " ", "\[Rule]", " ", "L"}]}], "*)"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"\[CapitalGamma]", "=",
RowBox[{"{",
RowBox[{"0", ",", "0", ",", "0"}], "}"}]}], ";"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{"X", "=",
RowBox[{
RowBox[{"b2", "/", "2"}], "+",
RowBox[{"b3", "/", "2"}]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"L", "=",
RowBox[{
RowBox[{"b1", "/", "2"}], "+",
RowBox[{"b2", "/", "2"}], "+",
RowBox[{"b3", "/", "2"}]}]}], ";"}], "\[IndentingNewLine]",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"X\[CapitalGamma]", "=", "1000"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"\[CapitalGamma]L", "=",
RowBox[{"1000", "*",
RowBox[{
RowBox[{"Norm", "[",
RowBox[{"L", "-", "\[CapitalGamma]"}], "]"}], "/",
RowBox[{"Norm", "[",
RowBox[{"\[CapitalGamma]", "-", "X"}], "]"}]}]}]}], ";"}],
"\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{
RowBox[{"Xto\[CapitalGamma]", "=",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"X", "+",
RowBox[{
RowBox[{"t", "/", "X\[CapitalGamma]"}], "*",
RowBox[{"(",
RowBox[{"\[CapitalGamma]", "-", "X"}], ")"}]}]}], ",",
RowBox[{"{",
RowBox[{"t", ",", "0", ",", "1000", ",", "1"}], "}"}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"\[CapitalGamma]toL", "=",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"\[CapitalGamma]", "+",
RowBox[{
RowBox[{"t", "/", "\[CapitalGamma]L"}], "*",
RowBox[{"(",
RowBox[{"L", "-", "\[CapitalGamma]"}], ")"}]}]}], ",",
RowBox[{"{",
RowBox[{"t", ",", "0", ",", "\[CapitalGamma]L", ",", "1"}], "}"}]}],
"]"}]}], ";"}], "\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{
RowBox[{"k", "=",
RowBox[{"Join", "[",
RowBox[{"Xto\[CapitalGamma]", ",", "\[CapitalGamma]toL"}], "]"}]}],
";"}]}]}]], "Input",
CellChangeTimes->{{3.797782808549841*^9, 3.797783183747787*^9}, {
3.7977863979012823`*^9, 3.797786460099724*^9}, {3.7977864906667128`*^9,
3.7977864910795593`*^9}, {3.797786575603641*^9, 3.797786618559019*^9}, {
3.797786759043764*^9, 3.797786759338704*^9}, {3.797786794319121*^9,
3.7977868952231007`*^9}, {3.797786935610717*^9, 3.79778708623402*^9}, {
3.797788260808648*^9, 3.797788359332878*^9}, {3.797788691954286*^9,
3.797788698875607*^9}, 3.797788749141966*^9, {3.797858034621664*^9,
3.797858094133555*^9}, {3.79795700814441*^9,
3.797957024133093*^9}},ExpressionUUID->"604d2a61-f4ed-4b52-8c86-\
80f6c1f8b030"],
Cell[BoxData[
RowBox[{
RowBox[{"(*", "Eigenvalues", "*)"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"SiEnergies", "=",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"Eigenvalues", "[",
RowBox[{
RowBox[{"H", "[",
RowBox[{"k", "[",
RowBox[{"[", "t", "]"}], "]"}], "]"}], "/.", "SiVals"}], "]"}],
",",
RowBox[{"{",
RowBox[{"t", ",", "1", ",",
RowBox[{
RowBox[{"Length", "[", "k", "]"}], "-", "1"}]}], "}"}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"GeEnergies", "=",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"Eigenvalues", "[",
RowBox[{
RowBox[{"H", "[",
RowBox[{"k", "[",
RowBox[{"[", "t", "]"}], "]"}], "]"}], "/.", "GeVals"}], "]"}],
",",
RowBox[{"{",
RowBox[{"t", ",", "1", ",",
RowBox[{
RowBox[{"Length", "[", "k", "]"}], "-", "1"}]}], "}"}]}], "]"}]}],
";"}]}]}]], "Input",
CellChangeTimes->{{3.79778320257342*^9, 3.797783390676309*^9}, {
3.797957028865814*^9,
3.797957030824902*^9}},ExpressionUUID->"abdcc11d-e3c7-4c5e-98c6-\
c015cdcf0af4"],
Cell[BoxData[
RowBox[{
RowBox[{"(*", "Plot", "*)"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"Sikmin", "=",
RowBox[{
RowBox[{"-",
RowBox[{"Norm", "[",
RowBox[{"\[CapitalGamma]", "-", "X"}], "]"}]}], "/.", "SiVals"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Sikmax", "=",
RowBox[{
RowBox[{"Norm", "[",
RowBox[{"L", "-", "\[CapitalGamma]"}], "]"}], "/.", "SiVals"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Gekmin", " ", "=", " ",
RowBox[{
RowBox[{"-",
RowBox[{"Norm", "[",
RowBox[{"\[CapitalGamma]", "-", "X"}], "]"}]}], "/.", "GeVals"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Gekmax", " ", "=", " ",
RowBox[{
RowBox[{"Norm", "[",
RowBox[{"L", "-", "\[CapitalGamma]"}], "]"}], "/.", "GeVals"}]}],
";"}], "\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{
RowBox[{"Xpoint", "=", "0"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"\[CapitalGamma]point", "=", "1000"}], ";"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{"Lpoint", "=", "1866.025"}], ";"}]}]}]], "Input",
CellChangeTimes->{{3.797783400341041*^9, 3.7977836940135107`*^9}, {
3.797787115959491*^9, 3.7977871693622932`*^9}, {3.797787203626504*^9,
3.7977873865332813`*^9}, {3.7977880561542053`*^9, 3.797788096529099*^9}, {
3.797788414956255*^9, 3.797788429930688*^9}, {3.797788461656694*^9,
3.797788469278009*^9}, {3.797788514007978*^9, 3.7977885200643663`*^9}, {
3.797788661543693*^9, 3.7977886630469093`*^9}, {3.797788732257821*^9,
3.797788735882822*^9}, {3.79785811529209*^9, 3.797858132153479*^9}, {
3.7978581700990543`*^9, 3.797858395270667*^9}, {3.7978587547846537`*^9,
3.797858761160014*^9}},
CellLabel->
"In[441]:=",ExpressionUUID->"e5afd801-6d5d-41eb-b7be-f24523000dae"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{"Show", "[",
RowBox[{
RowBox[{"ListPlot", "[",
RowBox[{
RowBox[{"Transpose", "[", "SiEnergies", "]"}], ",",
RowBox[{"PlotStyle", "\[Rule]", "Black"}], ",",
RowBox[{"GridLines", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"Xpoint", ",", "\[CapitalGamma]point", ",", "Lpoint"}],
"}"}], ",",
RowBox[{"{", "1.16", "}"}]}], "}"}]}], ",",
RowBox[{"Frame", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"True", ",", "True"}], "}"}], ",",
RowBox[{"{",
RowBox[{"True", ",", "True"}], "}"}]}], "}"}]}], ",",
RowBox[{"FrameTicks", "\[Rule]",
RowBox[{"{",
RowBox[{"None", ",", "Automatic"}], "}"}]}], ",",
RowBox[{"Axes", "\[Rule]",
RowBox[{"{",
RowBox[{"True", ",", "False"}], "}"}]}], ",",
RowBox[{"TicksStyle", "\[Rule]",
RowBox[{"Opacity", "[", "0", "]"}]}], ",",
RowBox[{"PlotLabel", "\[Rule]", "\"\<Cub-Si\>\""}], ",",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"None", ",", "\"\<Energy (eV)\>\""}], "}"}]}], ",",
RowBox[{"LabelStyle", "\[Rule]",
RowBox[{"Directive", "[",
RowBox[{"Black", ",", "16"}], "]"}]}]}], "]"}], ",",
RowBox[{"Epilog", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"Text", "[",
RowBox[{"\"\<\[CapitalGamma]\>\"", ",",
RowBox[{"{",
RowBox[{"\[CapitalGamma]point", ",",
RowBox[{"-", "0.9"}]}], "}"}]}], "]"}], ",",
RowBox[{"Text", "[",
RowBox[{"\"\<L\>\"", ",",
RowBox[{"{",
RowBox[{
RowBox[{"Lpoint", "-", "40"}], ",",
RowBox[{"-", "0.9"}]}], "}"}]}], "]"}], ",",
RowBox[{"Text", "[",
RowBox[{"\"\<X\>\"", ",",
RowBox[{"{",
RowBox[{
RowBox[{"Xpoint", "+", "40"}], ",",
RowBox[{"-", "0.9"}]}], "}"}]}], "]"}]}], "}"}]}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"-", "1"}], ",", "3"}], "}"}]}], ",",
RowBox[{"PlotRangePadding", "\[Rule]", "0"}], ",",
RowBox[{"ImageSize", "\[Rule]", "550"}]}], "]"}],
"\[IndentingNewLine]"}], "\[IndentingNewLine]",
RowBox[{"Show", "[",
RowBox[{
RowBox[{"ListPlot", "[",
RowBox[{
RowBox[{"Transpose", "[", "GeEnergies", "]"}], ",",
RowBox[{"PlotStyle", "\[Rule]", "Black"}], ",",
RowBox[{"GridLines", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"Xpoint", ",", "\[CapitalGamma]point", ",", "Lpoint"}],
"}"}], ",",
RowBox[{"{", "0.74", "}"}]}], "}"}]}], ",",
RowBox[{"Frame", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"True", ",", "True"}], "}"}], ",",
RowBox[{"{",
RowBox[{"True", ",", "True"}], "}"}]}], "}"}]}], ",",
RowBox[{"FrameTicks", "\[Rule]",
RowBox[{"{",
RowBox[{"None", ",", "Automatic"}], "}"}]}], ",",
RowBox[{"Axes", "\[Rule]",
RowBox[{"{",
RowBox[{"True", ",", "False"}], "}"}]}], ",",
RowBox[{"TicksStyle", "\[Rule]",
RowBox[{"Opacity", "[", "0", "]"}]}], ",",
RowBox[{"PlotLabel", "\[Rule]", "\"\<Cub-Ge\>\""}], ",",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"None", ",", "\"\<Energy (eV)\>\""}], "}"}]}], ",",
RowBox[{"LabelStyle", "\[Rule]",
RowBox[{"Directive", "[",
RowBox[{"Black", ",", "16"}], "]"}]}]}], "]"}], ",",
RowBox[{"Epilog", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"Text", "[",
RowBox[{"\"\<\[CapitalGamma]\>\"", ",",
RowBox[{"{",
RowBox[{"\[CapitalGamma]point", ",",
RowBox[{"-", "0.9"}]}], "}"}]}], "]"}], ",",
RowBox[{"Text", "[",
RowBox[{"\"\<L\>\"", ",",
RowBox[{"{",
RowBox[{
RowBox[{"Lpoint", "-", "40"}], ",",
RowBox[{"-", "0.9"}]}], "}"}]}], "]"}], ",",
RowBox[{"Text", "[",
RowBox[{"\"\<X\>\"", ",",
RowBox[{"{",
RowBox[{
RowBox[{"Xpoint", "+", "40"}], ",",
RowBox[{"-", "0.9"}]}], "}"}]}], "]"}]}], "}"}]}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"-", "1"}], ",", "3"}], "}"}]}], ",",
RowBox[{"PlotRangePadding", "\[Rule]", "0"}], ",",
RowBox[{"ImageSize", "\[Rule]", "550"}]}], "]"}]}], "Input",
CellChangeTimes->{{3.797783718983694*^9, 3.797783770907036*^9}, {
3.7977838257224627`*^9, 3.797784108131647*^9}, {3.797784148443301*^9,
3.7977841603088713`*^9}, {3.79778419607549*^9, 3.797784200634355*^9}, {
3.79778629085115*^9, 3.7977863329649067`*^9}, {3.797787408092205*^9,
3.7977874965398607`*^9}, 3.797787572031521*^9, {3.797788156961213*^9,
3.79778820365462*^9}, {3.797788483354355*^9, 3.7977884987110853`*^9}, {
3.797788575945635*^9, 3.797788634863902*^9}, {3.797788862941999*^9,
3.7977888685233793`*^9}, {3.797788902451653*^9, 3.797788905795896*^9}, {
3.7977890536860533`*^9, 3.797789109533815*^9}, {3.797789151241921*^9,
3.7977891761664953`*^9}, {3.797789343845236*^9, 3.797789358882372*^9}, {
3.7977895032366858`*^9, 3.797789572661825*^9}, {3.797789744792263*^9,
3.797789767212715*^9}, {3.797789807633583*^9, 3.797789817120573*^9}, {
3.7977904961086617`*^9, 3.797790508655501*^9}, {3.7978578607907124`*^9,
3.797857865383533*^9}, {3.79785845129219*^9, 3.797858500810555*^9}, {
3.797858766541013*^9, 3.79785890790165*^9}},
CellLabel->
"In[456]:=",ExpressionUUID->"212f4ee4-f2c6-4881-9586-a239624e3582"],
Cell[BoxData[
GraphicsBox[{{}, {{
{GrayLevel[0], PointSize[
NCache[
Rational[1, 360], 0.002777777777777778]], AbsoluteThickness[1.6],
PointBox[CompressedData["
1:eJxcvXlcTW/3/x+SEJIQQlIJSYhC9JKQJBlLUtEolUpzqdM815k7QwhJkoQQ
QhJCSDJPReaQypz8zvdx73Xen8fv/ud+PN/btdd+7ddep7Ova63rjNu8bZVH
TwUFhWV9FBT+3///739t5m0dCq9+HNEF8x/wcYb+cs0yYmXcUO5bO1/OqkgJ
PLzaRc7qWPlqbNsOOWvAbenWnRI5a+KDonTDCTlrQenTmUm35KyNQ7YP+r2W
sw5YrV1/fslZD8+7TbtVjhLr49AM8eAxcp4E29LJs6bI2QC7+vzbOkfOhri0
XPv4IjkbYZLi/v4r5DwNweNzQ9bJeTpWjej7dYOcZ4Bb2z/GRc7GeJxaprlJ
zjNxU6/vTVc5z8L1VxNynOVsgh8hY90c5WyKUcq9lq6R82zsmv0GNnKeg81j
nllbyHkuzs/v8pwlZzP45joI9OU8D37iPvc15Dwf/SaNndhHzuYo2Xsiu0N+
P4H79c1Kz4lZwMjvZzhX5McX4PtVh6mH5ccX4Mm2uy848uMW6JWxcF+w/LgF
/CdVR6yVH1+I+w3ebsby4wuRFb3SdbD8uCXiecKAVnreWJbQ/rGKf1n+/C3C
8t97buTJjy+CpdvuYUHy44sh2eoVskh+fDEmVg17N0x+fAm6WNf935TS8SWw
WpDft5xYwQor+5ysiJUft8Jmm0nRS+XHl+Js16g1g+XHl0IQVowHh+m4NVqz
vy2QErOsIU0Z7bBRfnwZDEcsTBgtP74M7/xSLj0poeM22K+tMkJEzLJBy+KO
hFXy48vBd3JR7C8/vhzGDtslFw/RcVuI81ctDiVm2aLXoHHKE+XHV0DhS8+m
R8V0fAXWdGveSiVWsMMQP37DTGLYwe1Z9qemg/Tv7cB3mz42nbjKDv+S9ntN
I1ZYid7zBl29X0TjV6JXh3BeJDFrJeYmut8YRVy1Erfn5wecPUDjV+Hsy6Ap
64mxChf39O75rZDGr8KGsfGfs4mrVuF0gFqHHrHCapzQbB50bj+NX42qUSMW
rSRmrca9B6+5rwpo/GokGGz/tZ1YYQ1qPT+F9yTGGmgsihucs4/Gr4Hljw2X
RhBXrUHCmEPZe/fS+LXYcDNv+0RirAU/xSWodA+NX4vZFtoZ04ir1iLBTf38
sXwavw6Pqz36TyfGOlQXLd5+ZDeNX4fnt95+m0RctQ4NLpG8gl003h5rf0y1
0SSGPQbsnaPF3Unj7SF5VjdIibjKHimiEaPC82i8A+ZPX2PxTkrjHaAcVZa0
jpjlgI7jm19XS2i8A5qzd2+aQqywHoGGeb8FYhq/Ht262WVdIhq/HpkRhxI2
EVetx/2dk4Jrcmm8I6aHW8TrEsMR6c6TShOFNN4RvsNH/mwW0HhHvH601HUe
scIGcJa3vxHyafwGJKTbZH7m0fgNWD6Ca2dJXLUB7e1dM0RcGu+Ep6yrsz5w
aLwT3uQZrJ9DzHLCbI6XNJVN453gqVH+tzGHxm/Eyo22rLHE2AjtP0HjvbNp
/EbY/HV+W5pF4zdC+GJFXUcmjXdGa1ZCwyxiOCPe3fR3WAaNd0bl1MMLT6XT
eGdMNxh3pDONxrtApNRoZkQMFzx70vvTllQa74Kfpj8u7Emh8S4YOer9iQfJ
NN4V279o3u5PrOUKJ15j//lJdD5XTF+zytc/kWFXV2z+8rAtL4HO74pA7iHx
tXiG813R8HiAV2ccxXPFwPsL148mbnJFaQ9ugCWL4m+CwbJ5h7fEUvxN6KOa
MSgrhuJvwvHRF3NLd1D8Tcg/qrv4VjTF34RxEf9GtkZR/E3I5AiGKRNXbcKI
1KmztSMp/ia0rx+aMCeC4m/G1OCcTrtwir8Zt46/yfIIo/ibUebhviI8lOJv
xpHFq2anhVD8zdiW8HuZKJjib0ZWxYGU/dspvozbC1rLgij+Zlw8PC/qTCDF
d0PQ/XMzqgMovhtqagOH1W6j+G44aVc4vs6f4rthTnHRhlt+FN8NqnFXzt/y
pfhueNm2fPnNrRTfDVZJWX2u+1B8NxTPbvxUs4Xiu8MzIlDhvDfFd8fRsSfM
T3hRfHeUhn05VOxJ8d2x0Sxw0S4Piu+OU6IMFbY7xXcHewK7B8uN4rujrKNe
x38zxXdHbVh+qOMmiu+BiF0rf1i6UnwP2FebHJjiQvE90H64MFndmeJ74KK0
XfDLieJ7wHxWwL2nGyi+B5pygxedd6T4Hhi+bO2bnespvgfcrb0rohwovieM
FRQr7e0pvidGLYn9Om0dxfdEwZZp6/utpfieCNMO6mhaTfE9sTJPXHViFcX3
RHegwsXUlRTfE5Gl/zrX21F8T9yqa3OauILie8GsYsqv78spvhem1Kler7ah
+F6Y09h5O3MZxffCTJWZ/ddaU3wvTNKaEj1qKcX3gq/B7PFNSyi+F7LOnVDY
t5jieyGy/p+6+yKK7w3/hmDX8ZYU3xtd+UGvmiwovje00+135S2g+N6wsInn
rAPF94busFXnBppTfG+MTdHTvjyP4nvjQ6lLVYQZxffGywHOIoO5FH8LGvjx
xc9mU/wtWLDf8EemKcXfgimDa2LmmFD8LVg7av+CNzMp/haMCzMG25jib8FR
q3uRpjMo/ha06Hz8+nwaxd8Cj8GP9ycYUXwfnE1UytWbSvF9MN/z3uWrUyi+
D8wGlkz3MqD4PnizqO2Z4mSK74PIJcq1+RMpvg+mnnf8Okef4vtg4xVbx7t6
FN8HXp+W9fLRpfhb0TrtTGv3eIq/FcW9eg7nalP8rTi6MDN+/DiKvxV2ltVT
j4+l+Fthcm3A2AVjKP5WBPd5ZHdTk+JvBWt/9mX7URR/K1zOinc0jaD4vhA1
eER4aVB8X1i9cT7dOozi+2Km29d5AUMpvi/uTkjv0z6E4vvCNVE4LEiN4vvi
9ZzErW2qFN8XiL2o5DeI4vvC+kflu7cDKL4f7p55PXiTCsX3Q9nqQ/EP+1F8
Pzw9t2OubV+K74etXjfNqvtQfD9cMOqfYqxE8f0Q6Vs0cr8ixfcD+8Wwn0N6
UXw/hFysHRvXg+L7Q63SiNv6T4eJ74/bHy+uWNfNMPxR/+KLw/kuhl39cVds
WKrzh2GWP9yz21ek/WI43x8fC8rmt/5guMofhSbPI5d/Z7jJH2+GfFU83Mmw
wjb8jnB51q+D4m+D4+h8Ra+vFH8bzuhMirr4heJvg/KkkAUjP1P8bSic88s+
sJXib4PLA8MLVz5Q/G2I78wOG/me4m9D79/cON+3FD8AKZfKn1W+Zlg1ALH5
/pn9W+h6AjB7zdxsh5cMGwXg+1Dhq31NdH0B6M/5nfnpOcN2AfjQ0pI+8xld
bwAW77/zLOoJwwEB0Ho8L7nqEV1/AN78K0zs9ZBhdgCS+mQ8srxPegLAW+ed
lNjIcFkAll49l1rdQPoCUFnUr6W7nuH6ADSfv5U7+zbpDUC5RXpB0E2G2wJg
8/Jcv+IbpD8Q7VUfrr+4RvoDsSSM+3pILekPhP0Qkw2Lr5D+QJzV2GAQVkP6
A7GfFbe+sJr0B0LtzJRXd6tIfyCaDr669u886Q/Ek+IJAyedI/2B+J4VU7bq
LOkPxGqJ39GI06Q/EB5ZkYN3nyL9gdCUTr5TfYL0B+KLX5+vLcdJfyDUJwgC
ex8j/YFIdXZarVNG+gMxa/xr4YJS0h8E3T+nzDaWkP4gpL/auCismPQH4aOd
69GcItIfhIVTl8YVFpL+IEx+uffE2QLSH4Q2y5+2t/eS/iCcKW5c3pxP+oNw
7vmlY193kf4gmOusilHYSfqD8HiWytEBUtIfhCzr2GUjxKQ/CJ/6z7Ydn0v6
g2CVf/X0ZAHpD8Lp/aezp/NIfxCCZuy6acIh/UE4+0gxbG4O6d8O7N2RMS+L
9G9HAe+Nske2TtX/9G/HoJ71PR04DBttR82MQ+bWfIaxHbfKV1+Ym8uw3Xac
qCmIM5Aw7Lodx9ZFJGvuZDhgOy4NLrnZP59h1nYU2Q23/72XYfZ2aGgLtN/t
Zzh/O15b/Zt6r4jhsu24N3dq7MVDDFdtx2C97kGHSxmu347Rby1f5h5luEl2
fWpPv8WVM9y2HXlfpdZbTzGsEIwjLKem1WcYVg1GV+C3k3PPkf5grDOYf0u7
ivQHQ3BjgF7fS6Q/GBe15p7/fJn0B2PKsTzh3VrSH4zEs8pHTt0g/cFQMFzb
R3qL9Acjpsx+9447pD8Y5btfh7o0kv5gzB3YmIUHpD8YtTU/Xmk9Jv3BmGmh
G6HwjPQH49JZo+UvXpD+YBiN/uxy7iXpD8Y95WlHJa9JfwhaHtQh7B3pD0GQ
hD9w9UfSH4LjwzeMNPxM+kMw8la7m/JX0h+C9I4pH5s7SH8IPEOeHznznfSH
oP7nvaPcX6Q/RPZ+9LptSxfpDwHL6IUv/pH+EEy8ytUd1lOX0R+CTJ07Iz8q
MlwWgsfJPjYX+jBcFQLt14ZnuP0Yrg/Boi+f3DwGMNwUAgwMW2qiynBbCDa7
i32UhzCsEArHm+OvPhzKsGoo0p63OBdpMKwVipFvi6eFjWLYKBQz2xaaLxrD
MEKx6NyOFLVxDNuFQqFOt9+L8Qy7huLemr5Xi/UYDgjFTetv50ImMswKRT+n
k5/NDRhmh+LGV431faeS/lAcM3rfdWca6Q9F18/2R2Jj0h+Kwjc92lxNSH8o
ylY2z58wh/SHYrqt05VWM9Ifiqcl85KPmpP+MDT+XhETYkH6wzAifmOp6SLS
H4ZzS42G/VlC+sOgOYx7otKa9IdBaYtN5o7lpD8MXXH6knl2pD8MQc5fnnet
Iv1h+H56i+PZtaQ/DIkDXVUiHEh/GI7wJZ0zN5D+MDxe2KzWvpH0hyG84Y/n
YVfSHwbrk0fbvNxIfxj26Fw/Ms6T9IchUk2l4LE36Q/DO+P5N7lbSX84LHtM
mGztT/plfDjznEIg6Q+H/9SZiSe3k/5wzDF/E7M1lPSHw3Gtx+GxEaQ/HD8P
hQ26G0X6w/F2/suCpBjSH46BdVv8TOJIfzg23G3wfpdA+sPhntssFCWT/nA4
j3b8sSSN9IcjaIpC+vcM0h8Ow9W5tgXZpD8cvs9eWq7kkP5wND/f7/uXR/rD
YWO473KRkPRHYI/nzhWrxaQ/AuFv1/X7KyX9EZh0j/Nt/y7SHwHtEaqDbfeQ
/gjM2Mxz+raP9Efgus6zB9JC0h8BI2lp/IKDpD8Cby7XOr05RPoj8Ghrq0d6
KemPQPHIxzunHCX9EVCasEqx/jjpj0B9ibo48CTpj0ByTvMGtdOkPwKsyHCb
Y2dJfwRGNot8Vp4n/RGw+Nfj5Jcq0h8J30dBhlmXSH8ktOYV3514hfRHQvei
5/7LtaQ/Etcve+5zvUH6I2EW4n3z903SH4nqSxPH8+tJfySGBXgXGNwl/ZEo
6/XSruYe6Y/E74bV+hsekv5IXPkbOenrY9IfiS3b1O2Tn5H+SBi9eHp4ZBPp
j4Sgnm1Y+pL0R2IXr/UhXpP+SCguKilpeEv6I3H5VsZBtw+kPwoG7xbf7mgl
/VGwHCYenfCF9EdhaMk8/uB20h8FlRtfpu/uJP1RmOzm82vyD9IfJfu+4f32
1C/SH4Xh1/d1WXSR/ii8T3xgerOb9EeByzknXddDj9EfhR+fBum+6MVwvux8
3qmNnkoMl0VhQn7TwU/KDFdFIa53Q8H2/gzXR2Hm46GXfw5guCkKddM8+u1Q
ZbgtCt+/hgcrDGFYIRoFDX17JQxlWDUapc71JxQ1GNaKxvWOxMykkQwbRcP4
0ovk3qMZRjTO3xEVJI5l2C4aZj+9XvfUZtg1Gp2vFJeydBgOkJ1/2ITbXXoM
s6Kx6G1SWPhE0h+Nl3EPF3RMJv3RWPPu3hQ/Q9IfjVXtxnPfGJH+aLxfXrLF
eQbpj8a12PaKezNJfzRyX53TtzEl/dHQLampuDiH9O9A/5ZK71nzSP8OHPdz
Mi02J/078LrX+gmjLUj/DnTO9p6ZY0n6d2BytPlmhSWkfwd0VPmHA5aS/h0Y
OHTU8KZlpH8HlBLTdtnakv4dsr///IWVdqR/B5Jqv/SeuJr078CQe3av+WtJ
/w7En9na/M+e9O9AZUXnry2OpH8Hjn3cbXjXifTvAH/ZuNi5LqR/B1YcNvi4
dxPpj8GF6pCgvu6kPwZao8rUt3mS/hisG59z56436Y/BIr0rRSZbSX8MzJYr
SyR+pD8G0/OV93dtI/0xMFSKvLYxiPTHQLJoUJ/zwaQ/BlLFqI2jw0h/DPyv
bauLiiD9Maj6vXv1oyjSH4OuF+faZ8aQ/hgU74k6yGGR/hjcW5oR1hpP+mNg
WbPLaXES6Y9B+3Mvh90ppD8W9tYinx9ppD8WVeJmrm0m6Y/FqYXf6guySX8s
VuxN1PnNJv2xCOtAli2P9MfCaf2TfnsFpD8Wtx4r7uzMJf2xYLn5L1wsIf2x
CK2p/SvMI/2xWFtec+PNLtIfi2u31Q7P3EP6Y1EtdtuTsI/0x6I1yquofj/p
j0X3lVsXNYtIfyx6Hl/6yauY9MfiiUvqpGMlpJ8Fn3tzIv6UMqzMQj/FwY8W
HqX7wUJbzZmlGccZ1mBh3eO31++coPvDgkrbEqfhFQzrs1AuTf+74QzdLxYm
bHQp3V3JsCkL13eF+L88T/ePhZcnoufpXGTYShbv5fhRHpfofrKgv2pkn/2X
GXZgYe+oQT1artL9ZeHSwqPK2tcZ9mYh/+yR0S51dL9l17vptLn0FsPhLNgr
7PC/X0/3n4WHKw8eVL3LcKpM/9/WtqX3yA8WCnK/L4x/wLCIBc3C4L2nHzGc
z4JS3lCVticMF7Gw+WkKS/c5w2UsGJ6J+Le+ieEKFtzDxalZLxmuYuGktWBU
VQvDtSxI146q+PqG4XoWGkofbdR+z/BDFs5sjFFZ9ZHhJhbSNpy6xPrE8DsW
WnnTE0q/MNzGgtrrndZPvjL8k4XpWgdG9OlkWCEOTX27vkz7zrByHHwcrW9u
+MmwahzGnDc/mvibYY041N5Lk5Z0MawVh4ZZ9zPudjOsH4c3WxvifilM+B8b
xWHgt8k7xvRi2DQOelbsHRa9GUYcZt0piffow7BVHM61G2am9GXYLg66SjXi
ov4MO8She8OIQ7UDGHaNQ4jZ0wtvBzHsHQfh29MPeqsxHBCHPQKXdm11hsPj
kB4WOch8GMOsOOifOmXoqMFwahz2htWsCB7JMDsOV+4tD8rSZFgUB9d3CsL9
YxjOj0NaVfqZSi2Gi+Kg7iN60aDNcFkcWj/eV3ynw3BFHEytOiZ26TFcFYff
0RLbQRMZrpXdj8SIoHGTGa6Pg/eaeYLpUxh+GIdLTdyTFlMZboqDdMSE+yun
MfwuDuWthR0uMxhui0PhogsD/WYy/DMO4waOnhBhwrBCPDwN/cwSZzOsHA//
LCfb7LkMq8YjdLDIKXcewxrxmJNf57nbnGGteMwae8C3cAHD+rLjwY1+JQvJ
/3hwk3r4HF1E/sfDd84T1xNLyP94jI8auKpiKfkfj5PTrOadWUb+x6Nr6Uzt
s8vJ/3gMOBavcHYF+R+PFMdnD06vJP/j0c+k/cCp1eR/PFzn+weUryX/4/HL
p9uozJ78j4fO2RXvi9eT//GInzZIXLCB/I/HvHvvzXduJP9lx49lPuO7kP/x
OPa4IDBjE/kfjyvuL/6w3Mj/eBT6vY8K8SD/47FPI+Crtxf5Hw+fHC2nDVvI
/3jU9yw6a7OV/I9HbfHxQfP8yH/Z9V9pszfYRv7H4+kuFf7IQPI/Hpbx5Zf6
bCf/4yG8JnjTEUz+x0P1/sau56HkfwJs1M4oXgsn/xPg3m7/72gk+Z+ANZ0t
H8XR5H8CPPMHXmfFkP8JcE6LF3uyyP8EdNt8Xr8snvxPwCD+v35TE8n/BIwY
4l4yOJn8l8VPvzavI4X8T4DhlWfn76aR/wko3W079XgG+Z+AzK5r2Zws8j8B
1bf/PvXPIf9l/36EaMQyDvmfgJh3iy31eOR/AuIdKpwUBOR/AgL4ks2PhOR/
Ao7fk649KiL/E/DA3WdmqoT8T8AtcXkP5zzyPwFaT/XPTN9F/icgdF+Is1I+
+Z+AU2FLPz/cQ/7Lrufrqi3F+8j/BNidwe3I/eR/AhSzLo61PkD+J+D7zERH
jYPkfwL8eSaxr4vJf9lxQXrW0RLyX6YPBknRpeR/Aj4X3fBYXEb+J2DWz+FT
Bx0j/xNR61PVdP84+Z+IGrvgyJ0nyP9EuA989WfzKfI/EXaale4TTpP/iaju
c6T8wxnyPxFdQVs/llSS/4mIHbpH2f88+Z+IoMp//Q2ryP9EXLU2+dZ6kfyX
ne/0j0vFl8j/RCiN+BrmdZn8T4Ryzl3V8VfJ/0T4r1+R/ayW/E/EyJvqbcLr
5H8izq1rnLmijvyXXV/kfBelW+R/Ii7c7+VbeZv8TwRn7L0NgXfI/0TUjXcz
1L1L/suu54bzqweN5H+i7H0xIjLtPvmfCBstt47ZD8n/RPwdfWv5+0fkfyJS
nbem5T4h/xNRsqx1v+Uz8j8Rs3x67mt7Tv4nQtfRhSVtIv8T0XS/fN6il+R/
IgpPlT/+9Ir8T0TjF1V7wWvyPxE6OVHH5r4l/2XjLxa2Nr0j/5Pgdceyd9IH
8j8JWjrKXRNayf8kjJm/r/7aJ/I/CboXa+N9vpD/SVD3m6zW7yv5nwQNrZiY
onbyPwnDHmy/uqiT/E9CxeELrc3fyP8kKL5Q/xz9g/xPwpzLejeG/SL/kyB6
XJRw5Df5n4RZp22HL+ki/5OwY1Rd0rO/5H8SIp823gr6R/4noeuHZrtSD/3/
cXgSPqc7fBH3ZJiVhMK7c69MVmQ4NQn606NCK3szzE7CMv0b/5b1YViUBCPH
pk2PlRnOT4J79rY8r34MFyVhRumUIx39GS5LwsvLt8UxAxiuSEKnYn8n5UEM
VyUh7jz/G1uV4dok+G3R9tRQY7g+Cbz8LYd3DWH4oUz/eK0b44cy3JQE7Xt/
zh8YxvC7JPw5fyx1kgbDbUlIH/hnQskIhn8m4dmwjDyDUQwrJOOk3Yg3hzQZ
Vk7GYUcnxUljGFZNRtivfj8KxzKskQwzjafntMcxrJWM47XJDju1GdZPRvrC
6ivDdBg2Skbmu0XKOboMmybj6/xrmkoTGEYy+N96KUbrM2yVjGmvDp9rm8iw
XTLOKMUudZ/MsEMy4lOmHrhvwLCr7PpOhN1fYsiwdzIi+qo+ODWV4YBkiHSP
FulNI/+TMe7ekGX86eR/MvQHfD2nYEz+JyO/tUcP35nkfzKiK/8NuT+L/E+G
Udu+7/NNyf9klOoWFRXOJv+TcVf3ysQBc8l/2fW2nIoIMiP/k9HNMhHdn0f+
J0N18b/E2ebkfzIWF18zl4L8T8ZKu5W1fxaQ/8n4p7RyzIaF5H8yaq4lLDht
Sf7LrqeqYNqwxeR/Mh5i2+fAJeR/MpLqdoXVWZH/KfAd8qVO15r8T0FT+6jP
O5aR/ynQC21+3GhD/qeAff8Pd5It+Z+C+qgJw2JXkP8pmN6l5d5gR/6noERz
f7TOKvI/BWvuBLiErCb/UxA9b4HK5TXkfwqaj9+NH7KO/E/Bh5Ovq13tyf8U
fPppXFfiQP6nwNMpdteP9eR/CjQ642cv2ED+p8C9V3demhP5nwLX7tLa+o3k
v+x609dUDnMh/1MwfsfhsA2u5H8K/jwP/71rE/mfgoHvQyybN5P/KShUcl+r
7U7+p6CzseeUzR7kfwp449Vu5HuS/ylI71w59bkX+Z+CxOj49SO3kP8p0Brv
vnStD/mfgqEJp7qzt5L/KdjmMy/iqi/5n4LDj09WdPuR/yno1/d1pfE28j8F
553TkrYEkP+y64/wUNsZSP6nQjJxrtvtIPI/FazQujCFYPI/FcckT1YYhZD/
qWjtPfmjcyj5nwrdjTuWZoaR/6lIjxT4VIST/6n46TfL9lUE+Z+KR9HjO1Wi
yP9UcLW1nGZGk/+p2K3aluS0g/xPRa2hfWB8DPmfCmvpiDEHYsn/VIw69Cfj
Oov8T0XfDxfPtMaR/6loHzmteEAC+S+7fpOBjlMSyf9UJAeNub4sifxPRdOM
Cb+9k8n/VHRqfn6fmEL+p6JEabZ4dyr5n4pZPW/1OZ1G/qfil8P2mXfSyf9U
KGR9Gfcug/xPRZdD35t/M8n/VPDLUmapZZP/qfCpmuasm0P+pyLy862FJmzy
Xxbvsd7bJRzyPxXxTj2s7LnkfypmpOp5evDI/1QoFjsvCOKT/6m4YhX0aIeA
/E+TfX5NMkwVkv9p2Gy2wpyTS/6nwfBSsYpYRP6nYcpkJeFuMfmfhmityU8K
JOR/GhzTXz0pkpL/aXDK+JV7KI/8T4M0zmTQ4Z3kfxruKnkvOLyL/E9DVtta
w5Ld5H8a1trV3TuYT/6n4el2oUnhHvI/DeqvY1fv2Uv+pyHDZ81E6T7yPw22
fZoqeAXkv4z/fO6RsZ/8T8OaS8sV4wrJ/zTYj7h2IeQA+Z8GcecU4y1F5H8a
jqct3bThIPmfhpfW7xfbFJP/aRj27nHL3EPkfxq0VrTOmVRC/qeh5dBHq+GH
yf80bPE+MLBXKfmfhhFTPmd8Iq5Pw/Wm7Kr7R8j/NAw86FByvoz8T8O4DyNX
7D9K/qfBZsn+ovRj5H8abu29WuF/nPxPg8WYVbEry8n/dLBGDu2afoL8T8cH
k2bDISfJ/3QUr0sZ3k6skY5Y4cMTt0+R/+mwtC/sW1JB/qfjmmm1Wspp8j8d
M0Z117ueIf9l5x9jYDn7LPmfjucFY3xVK8n/dHBsi6zeENulY3O39NGZc+R/
OpIe1I3JPk/+p2PO/IEarhfI/3Q8fDDjslEV+Z8Og4zBegoXyf90LGNFzblF
zErHO63FPaXV5H86XDUW7/C8RP7Lrne13SGjGvI/HYU952T+Is5PxxXBw7EX
L5P/6ThT1cMz5Qr5n46ZERnONlfJ/3TY/1jWV7WW/Jed/8QIzwbi2nS4B90I
5l0j/9Px0cB05urr5H86LuqbHBh8g/xPh1rr7uu3iN+lYxGsd6fXkf/p0Jg+
UHfRTfI/HaLBNRu6iRUy4BFkufDkLfI/A7WTvZ/43ib/M3DWQVlHu578z4Ce
Q7fmfWKtDLysG38l9Q75n4E3O1eNndNA/mdg03d3/Q/Ephm4umhms+gu+Z+B
X+a7li5uJP8z4P8sclM7sV0GJm0o1N95j/zPQN+5XbsW3yf/M3BmoUPNZ2Lv
DDSwhCLBA/I/A8oLeaPmPiT/M2CiNXn5C2JWBkI65kyJf0T+Z8Du2e6z4x+T
/xk4tdDk5yViUQaMGp6/3PyE/M9AW0RwlMJT8j8DHYH3L+YRl2VAzeTVCZNn
5H8GhmZG2N8hrsrAvYjwwi3Pyf8MuK64sFfhBfkvO/+eKTZC4ocZ0Fi+b++k
JvI/Ax+CFArPEb/LwPco3XUrmsl/2fmGdxx7QfwzA0pzrSv9X5L/meCPVwnq
IlbOhGTNyMbUV+R/JnaJ1r0c0kL+Z2JSj315O4m1MtH5prmn3mvyPxPf339T
P0xslAmPrxcbpr8h/zPRNHmi2SliZCJz0KCVc96S/5kY6Gg/uJLYLhMVqm+i
zd6R/5ngsHbzzhK7ZmLVfO+1s9+T/5mo1tOtPkEckIlI57OPjD6Q/5nQWqWa
V0zMykTMyb59x38k/zMRkJqlJSFmZ2LWgPiXg1rJ/0wsbbhpm0icnwnuYXuP
H8RFmfA+p6S35RP5n4lK72r2I+KKTHQ7B+23+kz+Z8Jd1O12krg2E4/XrqjT
/kL+Z0Jj3PLnWcQPZfejrkn8g7gpE/OCO7pd2sj/TCyM9h9wlbgtExu4cy8b
fCX/M2F+2FKPQ6yQhY8qwUadxMpZSJ9T/mptO/mfhT3KbeYniTWyMJSntmho