forked from daicoolb/ConvMF_V2.0
-
Notifications
You must be signed in to change notification settings - Fork 1
/
models.py
139 lines (109 loc) · 4.58 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
'''
Created on July 14, 2017
@author: Beili
'''
import os
import time
from util import eval_RMSE
import math
import numpy as np
from text_analysis.models import CNN_module
from text_analysis.aSDAE import aSDAE_module
def PHDMF(res_dir, train_user, train_item, valid_user, test_user,
R, CNN_X, aSDAE, vocab_size, init_W=None, give_item_weight=True,
max_iter=50, lambda_u=1, lambda_v=100, dimension=50,
dropout_rate=0.2, emb_dim=200, max_len=300, num_kernel_per_ws=100):
# explicit setting
a = 1
b = 0
aSDAE_encoder_dimension=100
user_feature=42
num_user = R.shape[0]
num_item = R.shape[1]
PREV_LOSS = 1e-50
if not os.path.exists(res_dir):
os.makedirs(res_dir)
f1 = open(res_dir + '/state.log', 'w')
Train_R_I = train_user[1]
Train_R_J = train_item[1]
Test_R = test_user[1]
Valid_R = valid_user[1]
if give_item_weight is True:
item_weight = np.array([math.sqrt(len(i))
for i in Train_R_J], dtype=float)
item_weight = (float(num_item) / item_weight.sum()) * item_weight
else:
item_weight = np.ones(num_item, dtype=float)
pre_val_eval = 1e10
cnn_module = CNN_module(dimension, vocab_size, dropout_rate,emb_dim, max_len, num_kernel_per_ws, init_W)
theta = cnn_module.get_projection_layer(CNN_X)
asdae_module = aSDAE_module(aSDAE_encoder_dimension,dimension,num_item,user_feature)
alpha = asdae_module.get_middle_layer(R.toarray(),aSDAE)
#np.random.seed(133)
#U = np.random.uniform(size=(num_user, dimension))
U = alpha
V = theta
endure_count = 5
count = 0
for iteration in xrange(max_iter):
loss = 0
tic = time.time()
print "%d iteration\t(patience: %d)" % (iteration, count)
VV = b * (V.T.dot(V)) + lambda_u * np.eye(dimension)
#sub_loss = np.zeros(num_user)
for i in xrange(num_user):
idx_item = train_user[0][i]
V_i = V[idx_item]
R_i = Train_R_I[i]
A = VV + (a - b) * (V_i.T.dot(V_i))
B = (a * V_i * (np.tile(R_i, (dimension, 1)).T)).sum(0) + lambda_u * aphla[i]
U[i] = np.linalg.solve(A, B)
#sub_loss[i] = -0.5 * lambda_u * np.dot(U[i], U[i])
#loss = loss + np.sum(sub_loss)
asdae_seed = np.random.randint(100000)
asdae_history = asdae_module.train(aSDAE,R.toarray(),U,asdae_seed)
alpha = asdae_module.get_middle_layer(R.toarray(),aSDAE)
loss = loss - 0.5 * lambda_u * asdae_history.history['loss'][-1]
sub_loss = np.zeros(num_item)
UU = b * (U.T.dot(U))
for j in xrange(num_item):
idx_user = train_item[0][j]
U_j = U[idx_user]
R_j = Train_R_J[j]
tmp_A = UU + (a - b) * (U_j.T.dot(U_j))
A = tmp_A + lambda_v * item_weight[j] * np.eye(dimension)
B = (a * U_j * (np.tile(R_j, (dimension, 1)).T)
).sum(0) + lambda_v * item_weight[j] * theta[j]
V[j] = np.linalg.solve(A, B)
sub_loss[j] = -0.5 * np.square(R_j * a).sum()
sub_loss[j] = sub_loss[j] + a * np.sum((U_j.dot(V[j])) * R_j)
sub_loss[j] = sub_loss[j] - 0.5 * np.dot(V[j].dot(tmp_A), V[j])
loss = loss + np.sum(sub_loss)
seed = np.random.randint(100000)
history = cnn_module.train(CNN_X, V, item_weight, seed)
theta = cnn_module.get_projection_layer(CNN_X)
cnn_loss = history.history['loss'][-1]
loss = loss - 0.5 * lambda_v * cnn_loss * num_item
tr_eval = eval_RMSE(Train_R_I, U, V, train_user[0])
val_eval = eval_RMSE(Valid_R, U, V, valid_user[0])
te_eval = eval_RMSE(Test_R, U, V, test_user[0])
toc = time.time()
elapsed = toc - tic
converge = abs((loss - PREV_LOSS) / PREV_LOSS)
if (val_eval < pre_val_eval):
cnn_module.save_model(res_dir + '/CNN_weights.hdf5')
np.savetxt(res_dir + '/U.dat', U)
np.savetxt(res_dir + '/V.dat', V)
np.savetxt(res_dir + '/theta.dat', theta)
np.savetxt(res_dir + '/alpha.dat', alpha)
else:
count = count + 1
pre_val_eval = val_eval
print "Loss: %.5f Elpased: %.4fs Converge: %.6f Tr: %.5f Val: %.5f Te: %.5f" % (
loss, elapsed, converge, tr_eval, val_eval, te_eval)
f1.write("Loss: %.5f Elpased: %.4fs Converge: %.6f Tr: %.5f Val: %.5f Te: %.5f\n" % (
loss, elapsed, converge, tr_eval, val_eval, te_eval))
if (count == endure_count):
break
PREV_LOSS = loss
f1.close()