-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_yolo.py
313 lines (235 loc) · 13.3 KB
/
main_yolo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
from __future__ import division
import argparse
import os
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets
from torch.autograd import Variable
from torch.optim.lr_scheduler import MultiStepLR
import warnings
warnings.filterwarnings("ignore")
os.system('git clone https://github.com/eriklindernoren/PyTorch-YOLOv3')
print(os.getcwd())
if not os.path.isfile('yolov3.weights') :
os.system('wget https://pjreddie.com/media/files/yolov3.weights')
import os
import sys
import time
import datetime
import torch
from torch.utils.data import DataLoader
from torchvision import datasets
from torch.autograd import Variable
import matplotlib.pyplot as plt
import matplotlib.patches as patches
from matplotlib.ticker import NullLocator
if __name__ == '__main__':
# Training settings
parser = argparse.ArgumentParser(description='RecVis A3 training script')
parser.add_argument('--data', type=str, default='./bird_dataset', metavar='D',
help="folder where data is located. train_images/ and val_images/ need to be found in the folder")
parser.add_argument('--batchsize', type=int, default=256, metavar='B',
help='input batch size for training (default: 256)')
parser.add_argument('--epochs', type=int, default=80, metavar='N',
help='number of epochs to train (default: 80)')
parser.add_argument('--lr', type=float, default=0.1, metavar='LR',
help='learning rate (default: 0.01)')
parser.add_argument('--momentum', type=float, default=0.9, metavar='M',
help='SGD momentum (default: 0.9)')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--log-interval', type=int, default=3, metavar='N',
help='how many batches to wait before logging training status')
parser.add_argument('--experiment', type=str, default='experiment', metavar='E',
help='folder where experiment outputs are located.')
parser.add_argument('--image_folder', type=str, default='./bird_dataset', help='path to dataset')
parser.add_argument('--config_path', type=str, default='./PyTorch-YOLOv3/config/yolov3.cfg', help='path to model config file')
parser.add_argument('--weights_path', type=str, default='yolov3.weights', help='path to weights file')
parser.add_argument('--class_path', type=str, default='./PyTorch-YOLOv3/data/coco.names', help='path to class label file')
parser.add_argument('--conf_thres', type=float, default=0.8, help='object confidence threshold')
parser.add_argument('--nms_thres', type=float, default=0.4, help='iou thresshold for non-maximum suppression')
parser.add_argument('--batch_size_cropped', type=int, default=1, help='size of the batches')
parser.add_argument('--n_cpu', type=int, default=1, help='number of cpu threads to use during batch generation')
parser.add_argument('--img_size', type=int, default=416, help='size of each image dimension')
parser.add_argument('--output', type=str, default='./birds_output_cropped', help='path to dataset')
parser.add_argument('--crop', type=bool, default=True, help='whether to crop data')
parser.add_argument('--use_crop', type=bool, default=True, help='whether to use cropped data')
parser.add_argument('--dont_crop', type=bool, default=False, help='whether to use cropped data')
parser.add_argument('--dont_use_crop', type=bool, default=False, help='whether to use cropped data')
args = parser.parse_args()
import sys
sys.path.insert(0, './PyTorch-YOLOv3/')
from models import *
from utils.utils import *
from utils.datasets import *
cuda = torch.cuda.is_available()
if args.crop and not args.dont_crop :
os.makedirs(args.output, exist_ok=True)
# Set up model
model = Darknet(args.config_path, img_size=args.img_size)
model.load_weights(args.weights_path)
if cuda:
model.cuda()
model.eval() # Set in evaluation mode
direct=args.image_folder
for data_type in list(os.walk(direct))[0][1] :
data_type = '/'+ data_type
directory = args.image_folder+data_type
print(directory)
for folder in list(os.walk(directory))[0][1]:
print("\nFolder : "+folder)
if not os.path.isdir(args.output):
os.makedirs(args.output)
if not os.path.isdir(args.output+data_type+'/'+folder):
os.makedirs(args.output+data_type+'/'+folder)
dataloader = DataLoader(ImageFolder(directory+'/'+folder, img_size=args.img_size),
batch_size=args.batch_size_cropped, shuffle=False, num_workers=args.n_cpu)
classes = load_classes(args.class_path) # Extracts class labels from file
Tensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor
imgs = [] # Stores image paths
img_detections = [] # Stores detections for each image index
print ('\n\tPerforming object detection:')
# prev_time = time.time()
try:
list(dataloader)[0]
except:
for file in os.listdir(directory+'/'+folder):
i=plt.imread(directory+'/'+folder+'/'+file)
if len(i.shape)==2:
plt.imsave(directory+'/'+folder+'/'+file,np.stack((i,)*3, axis=-1))
del i
for batch_i, (img_paths, input_imgs) in enumerate(dataloader):
# Configure input
input_imgs = Variable(input_imgs.type(Tensor))
# Get detections
with torch.no_grad():
detections = model(input_imgs)
detections = non_max_suppression(detections, 80, args.conf_thres, args.nms_thres)
# Log progress
# current_time = time.time()
# inference_time = datetime.timedelta(seconds=current_time - prev_time)
# prev_time = current_time
# #print ('\t+ Batch %d, Inference Time: %s' % (batch_i, inference_time))
# Save image and detections
imgs.extend(img_paths)
img_detections.extend(detections)
print ('\n\tSaving images:')
# Iterate through images and save plot of detections
for img_i, (path, detections) in enumerate(zip(imgs, img_detections)):
# Create plot
img = np.array(Image.open(path))
path=path.split("/")[-1]
plt.imsave(args.output+data_type+'/'+folder+'/'+path, img)
# The amount of padding that was added
pad_x = max(img.shape[0] - img.shape[1], 0) * (args.img_size / max(img.shape))
pad_y = max(img.shape[1] - img.shape[0], 0) * (args.img_size / max(img.shape))
# Image height and width after padding is removed
unpad_h = args.img_size - pad_y
unpad_w = args.img_size - pad_x
# Draw bounding boxes and labels of detections
if detections is not None:
unique_labels = detections[:, -1].cpu().unique()
n_cls_preds = len(unique_labels)
#bbox_colors = random.sample(colors, n_cls_preds)
for x1, y1, x2, y2, conf, cls_conf, cls_pred in detections:
if cls_pred == classes.index("bird"):
# Rescale coordinates to original dimensions
box_h = ((y2 - y1) / unpad_h) * img.shape[0]
box_w = ((x2 - x1) / unpad_w) * img.shape[1]
y1 = ((y1 - pad_y // 2) / unpad_h) * img.shape[0]
x1 = ((x1 - pad_x // 2) / unpad_w) * img.shape[1]
x1, y1 = np.maximum(0,int(x1)-20), np.maximum(0,int(y1)-20)
x2, y2 = np.minimum(x1+box_w+40,img.shape[1]), np.minimum(y1+box_h+40,img.shape[0])
img1 = img[int(y1):int(y2), int(x1):int(x2), :].copy()
path=path.split("/")[-1]
# Save generated image with detections
if data_type == '/test_images' :
plt.imsave(args.output+data_type+'/'+folder+'/'+path, img1)
plt.close()
else :
plt.imsave(args.output+data_type+'/'+folder+'/'+path[:-4]+'_cropped_20_.jpg', img1)
plt.close()
use_cuda = torch.cuda.is_available()
torch.manual_seed(args.seed)
# Create experiment folder
if not os.path.isdir(args.experiment):
os.makedirs(args.experiment)
# Data initialization and loading
from data import data_transforms
from data import data_transforms_test
if args.use_crop and not args.dont_use_crop :
train_loader = torch.utils.data.DataLoader(
datasets.ImageFolder(args.output + '/train_images',
transform=data_transforms),
batch_size=args.batchsize, shuffle=True, num_workers=1)
val_loader = torch.utils.data.DataLoader(
datasets.ImageFolder(args.output + '/val_images',
transform=data_transforms_test),
batch_size=args.batchsize, shuffle=False, num_workers=1)
else :
train_loader = torch.utils.data.DataLoader(
datasets.ImageFolder(args.data + '/train_images',
transform=data_transforms),
batch_size=args.batchsize, shuffle=True, num_workers=1)
val_loader = torch.utils.data.DataLoader(
datasets.ImageFolder(args.data + '/val_images',
transform=data_transforms_test),
batch_size=args.batchsize, shuffle=False, num_workers=1)
# Neural network and optimizer
# We define neural net in model.py so that it can be reused by the evaluate.py script
from model import Net
model = nn.DataParallel(Net())
# print(model.module._modules.keys())
if use_cuda:
print('Using GPU')
model.cuda()
else:
print('Using CPU')
#optimizer = optim.SGD(list(model.module.res.fc.parameters()) + list(model.module.res.layer4.parameters()) +list(model.module.res2.fc.parameters()) + list(model.module.res2.layer4.parameters()) #+ list(model.module.res2.layer4.parameters())
#, lr=args.lr, momentum=args.momentum )
optimizer = optim.SGD(model.parameters() , lr=args.lr, momentum=args.momentum )
scheduler = MultiStepLR(optimizer, milestones=[40], gamma=0.1)
def train(epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
if use_cuda:
data, target = data.cuda(), target.cuda()
optimizer.zero_grad()
output = model(data)
criterion = torch.nn.CrossEntropyLoss(reduction='elementwise_mean')
if isinstance(output, tuple):
loss = sum((criterion(o,target) for o in output))
else:
loss = criterion(output, target)
loss.backward()
optimizer.step()
if batch_idx % args.log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.data.item()))
def validation():
model.eval()
validation_loss = 0
correct = 0
for data, target in val_loader:
if use_cuda:
data, target = data.cuda(), target.cuda()
output = model(data)
# sum up batch loss
criterion = torch.nn.CrossEntropyLoss(reduction='elementwise_mean')
validation_loss += criterion(output, target).data.item()
# get the index of the max log-probability
pred = output.data.max(1, keepdim=True)[1]
correct += pred.eq(target.data.view_as(pred)).cpu().sum()
validation_loss /= len(val_loader.dataset)
print('\nValidation set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
validation_loss, correct, len(val_loader.dataset),
100. * correct / len(val_loader.dataset)))
for epoch in range(1, args.epochs + 1):
scheduler.step()
train(epoch)
validation()
model_file = args.experiment + '/model_' + str(epoch) + '.pth'
torch.save(model.state_dict(), model_file)
print('\nSaved model to ' + model_file + '. You can run `python evaluate.py --model ' + model_file + '` to generate the Kaggle formatted csv file')