-
Notifications
You must be signed in to change notification settings - Fork 0
/
wgan-mnist-5.1.2.py
231 lines (203 loc) · 8.53 KB
/
wgan-mnist-5.1.2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
'''Trains WGAN on MNIST using Keras
Trains a GAN using Wassertein loss. Similar to DCGAN except for
linear activation in output and use of n_critic training per
adversarial training. Discriminator weights are clipped as a
requirement of Lipschitz constraint.
[1] Radford, Alec, Luke Metz, and Soumith Chintala.
"Unsupervised representation learning with deep convolutional
generative adversarial networks." arXiv preprint arXiv:1511.06434 (2015).
[2] Arjovsky, Martin, Soumith Chintala, and Léon Bottou.
"Wasserstein GAN." arXiv preprint arXiv:1701.07875 (2017).
'''
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from tensorflow.keras.layers import Input
from tensorflow.keras.optimizers import RMSprop
from tensorflow.keras.models import Model
from tensorflow.keras.datasets import mnist
from tensorflow.keras import backend as K
from tensorflow.keras.models import load_model
import numpy as np
import argparse
import sys
sys.path.append("..")
from lib import gan
def train(models, x_train, params):
"""Train the Discriminator and Adversarial Networks
Alternately train Discriminator and Adversarial
networks by batch.
Discriminator is trained first with properly labelled
real and fake images for n_critic times.
Discriminator weights are clipped as a requirement
of Lipschitz constraint.
Generator is trained next (via Adversarial) with
fake images pretending to be real.
Generate sample images per save_interval
Arguments:
models (list): Generator, Discriminator,
Adversarial models
x_train (tensor): Train images
params (list) : Networks parameters
"""
# the GAN models
generator, discriminator, adversarial = models
# network parameters
(batch_size, latent_size, n_critic,
clip_value, train_steps, model_name) = params
# the generator image is saved every 500 steps
save_interval = 500
# noise vector to see how the
# generator output evolves during training
noise_input = np.random.uniform(-1.0,
1.0,
size=[16, latent_size])
# number of elements in train dataset
train_size = x_train.shape[0]
# labels for real data
real_labels = np.ones((batch_size, 1))
for i in range(train_steps):
# train discriminator n_critic times
loss = 0
acc = 0
for _ in range(n_critic):
# train the discriminator for 1 batch
# 1 batch of real (label=1.0) and
# fake images (label=-1.0)
# randomly pick real images from dataset
rand_indexes = np.random.randint(0,
train_size,
size=batch_size)
real_images = x_train[rand_indexes]
# generate fake images from noise using generator
# generate noise using uniform distribution
noise = np.random.uniform(-1.0,
1.0,
size=[batch_size, latent_size])
fake_images = generator.predict(noise)
# train the discriminator network
# real data label=1, fake data label=-1
# instead of 1 combined batch of real and fake images,
# train with 1 batch of real data first, then 1 batch
# of fake images.
# this tweak prevents the gradient
# from vanishing due to opposite
# signs of real and fake data labels (i.e. +1 and -1) and
# small magnitude of weights due to clipping.
real_loss, real_acc = \
discriminator.train_on_batch(real_images,
real_labels)
fake_loss, fake_acc = \
discriminator.train_on_batch(fake_images,
-real_labels)
# accumulate average loss and accuracy
loss += 0.5 * (real_loss + fake_loss)
acc += 0.5 * (real_acc + fake_acc)
# clip discriminator weights to satisfy Lipschitz constraint
for layer in discriminator.layers:
weights = layer.get_weights()
weights = [np.clip(weight,
-clip_value,
clip_value) for weight in weights]
layer.set_weights(weights)
# average loss and accuracy per n_critic training iterations
loss /= n_critic
acc /= n_critic
log = "%d: [discriminator loss: %f, acc: %f]" % (i, loss, acc)
# train the adversarial network for 1 batch
# 1 batch of fake images with label=1.0
# since the discriminator weights are frozen in
# adversarial network only the generator is trained
# generate noise using uniform distribution
noise = np.random.uniform(-1.0,
1.0,
size=[batch_size, latent_size])
# train the adversarial network
# note that unlike in discriminator training,
# we do not save the fake images in a variable
# the fake images go to the discriminator
# input of the adversarial for classification
# fake images are labelled as real
# log the loss and accuracy
loss, acc = adversarial.train_on_batch(noise, real_labels)
log = "%s [adversarial loss: %f, acc: %f]" % (log, loss, acc)
print(log)
if (i + 1) % save_interval == 0:
# plot generator images on a periodic basis
gan.plot_images(generator,
noise_input=noise_input,
show=False,
step=(i + 1),
model_name=model_name)
# save the model after training the generator
# the trained generator can be reloaded
# for future MNIST digit generation
generator.save(model_name + ".h5")
def wasserstein_loss(y_label, y_pred):
return -K.mean(y_label * y_pred)
def build_and_train_models():
"""Load the dataset, build WGAN discriminator,
generator, and adversarial models.
Call the WGAN train routine.
"""
# load MNIST dataset
(x_train, _), (_, _) = mnist.load_data()
# reshape data for CNN as (28, 28, 1) and normalize
image_size = x_train.shape[1]
x_train = np.reshape(x_train, [-1, image_size, image_size, 1])
x_train = x_train.astype('float32') / 255
model_name = "wgan_mnist"
# network parameters
# the latent or z vector is 100-dim
latent_size = 100
# hyper parameters from WGAN paper [2]
n_critic = 5
clip_value = 0.01
batch_size = 64
lr = 5e-5
train_steps = 40000
input_shape = (image_size, image_size, 1)
# build discriminator model
inputs = Input(shape=input_shape, name='discriminator_input')
# WGAN uses linear activation in paper [2]
discriminator = gan.discriminator(inputs, activation='linear')
optimizer = RMSprop(lr=lr)
# WGAN discriminator uses wassertein loss
discriminator.compile(loss=wasserstein_loss,
optimizer=optimizer,
metrics=['accuracy'])
discriminator.summary()
# build generator model
input_shape = (latent_size, )
inputs = Input(shape=input_shape, name='z_input')
generator = gan.generator(inputs, image_size)
generator.summary()
# build adversarial model = generator + discriminator
# freeze the weights of discriminator during adversarial training
discriminator.trainable = False
adversarial = Model(inputs,
discriminator(generator(inputs)),
name=model_name)
adversarial.compile(loss=wasserstein_loss,
optimizer=optimizer,
metrics=['accuracy'])
adversarial.summary()
# train discriminator and adversarial networks
models = (generator, discriminator, adversarial)
params = (batch_size,
latent_size,
n_critic,
clip_value,
train_steps,
model_name)
train(models, x_train, params)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
help_ = "Load generator h5 model with trained weights"
parser.add_argument("-g", "--generator", help=help_)
args = parser.parse_args()
if args.generator:
generator = load_model(args.generator)
gan.test_generator(generator)
else:
build_and_train_models()