Code for the paper "Modeling Electrical Motor Dynamics using Encoder-Decoder with Recurrent Skip Connection" (Accepted in AAAI 2020)
This is the github repository containing the code for the paper "Modeling Electrical Motor Dynamics using Encoder-Decoder with Recurrent Skip Connection" by Sagar Verma, Nicolas Henwood, Marc Castella, Francois Malrait, and Jean-Christophe Pesquet.
**Note: All the tables in the paper are for models trained for predicting individual quantities from three input quantities. It is possible to use the model for any input-ouput combinations by passing appropriate arguments. Also MAE is first computed on normalized output and then aggregated and normalized. Ignore # the reported MAE, RMSLE, and RMSE.
The code has been tested on:
- 2xNvidia V100 GPU
- Ubuntu 18.04 LTS on 48 vCPUs and 186 GB of RAM
- Python 3.6.10
- Pytorch v1.4.0
Installation
git clone https://github.com/INRIA-OPIS/MotorNN.git
git checkout AAAI2020_release
pip install -r requirements.txt
pip install -e .
Download and extract dataset. Create weights and logs path.
To train a model use following
cd MotorNN
python motor_dynamics/summoner.py --gpu=0 --task=train --train_sim_dir={DATA_PATH}/train_sim/ --val_sim_dir={DATA_PATH}/val_sim/ --weights_dir={WEIGHTS_PATH} --logs_dir={LOGS_PATH} --model=deep_cnn --epochs=100 --batch_size=512 --lr=0.1 --inp_quants='voltage_d,voltage_q,speed' --out_quants='current_d' --stride=1 --window=100 --act=relu --loss=mse
For any queries, please contact
Sagar Verma: sagar15056@iiitd.ac.in