-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_reg.py
250 lines (192 loc) · 10.2 KB
/
train_reg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import os
from pickletools import optimize
from random import sample
import numpy as np
import pandas
import torch_geometric
import tqdm
import argparse
import torch
import torch.nn.functional as F
import torch.optim as optim
from torch_geometric.utils import get_laplacian
from torch_geometric.data import Data
import pandas as pd
from model import MLP, GCN_Net, SAGE_Net, GAT_Net, Cheb_Net
from utils import get_data, set_best_train_args, sample_complement, lap_loss, normalize_edge, square_p_loss, mad_reg_loss
from torch.utils.tensorboard import SummaryWriter
def one_run(args, seed, run, bar, writer):
torch.manual_seed(seed)
torch_geometric.seed_everything(seed)
if not args.no_cuda:
torch.cuda.manual_seed(seed)
data = get_data(args) # all the topological data are sparsed
if args.net == 'mlp':
model = MLP(ninput=data.x.shape[1], nclass=data.y.max()+1, args=args)
elif args.net == 'gcn':
model = GCN_Net(ninput=data.x.shape[1], nclass=data.y.max().item()+1, args=args, pred=True)
elif args.net == 'gat':
model = GAT_Net(ninput=data.x.shape[1], nclass=data.y.max().item()+1, args=args, pred=True)
elif args.net == 'sage':
model = SAGE_Net(ninput=data.x.shape[1], nclass=data.y.max().item()+1, args=args, pred=True)
elif args.net[:4] == 'cheb':
model = Cheb_Net(ninput=data.x.shape[1], nclass=data.y.max().item()+1, nhid=args.nhid, K=int(args.net[4]))
if (not args.no_cuda) and torch.cuda.is_available():
torch.cuda.set_device(args.cuda_device)
data = data.cuda()
model = model.cuda()
else:
device = torch.device('cpu')
degree = data.edge_index.shape[1] / data.x.shape[0]
optimizer = torch.optim.Adam([{'params': model.parameters(), 'weight_decay': args.weight_decay, 'lr': args.lr}])
if not args.no_earlystop:
best_epoch = 0
best_val_acc = 0.
bad_epochs = 0
best_test_acc = 0.
best_val_loss = torch.inf
for ite in range(args.epochs):
bar.set_description('Run:{:2d}, iter:{:4d}'.format(run, ite))
model.train()
optimizer.zero_grad()
pred = model(data)
output = F.log_softmax(pred, dim=1)
loss = F.nll_loss(output[data.train_mask], data.y[data.train_mask])
'''
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
IMPORTANT TO UNDERSTANDING THE VARIOUS TYPES OF REGULARIZATION METHODS
here we could append various types of regularization methods:
MADReg: mad_reg_loss
P_reg: square_p_loss
NL_reg: only give positive values to \alpha and set \beta to zero
CLAR_reg: adjusting \alpha and \beta together
'''
# soft_loss = square_p_loss(pred, data.edge_index).mean().clamp(0., 1.)
# soft_loss = mad_reg_loss(pred, data.edge_index).clamp(0., 1.)
# soft_loss = soft_loss * (-0.5) # to be adjusted as the original paper
# soft_loss.backward(retain_graph=True)
if args.neg > 0.:
neg_edges, neg_norm = sample_complement(data.edge_index, data.x.shape[0], s=args.S)
neg_loss = lap_loss(pred, neg_edges, neg_norm).clamp(0., 1.)
(neg_loss * args.neg).backward(retain_graph=True)
del neg_loss, neg_norm
if args.pos > 0.:
pos_norm = normalize_edge(edge_index=data.edge_index, num_nodes=data.x.shape[0])
pos_loss = lap_loss(pred, data.edge_index, pos_norm).clamp(0., 1.)
(pos_loss * args.pos).backward(retain_graph=True)
del pos_loss, pos_norm
'''
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
'''
loss.backward()
optimizer.step()
model.eval()
eval_pred = model(data)
eval_output = F.log_softmax(eval_pred, dim=1)
val_loss = F.nll_loss(eval_output[data.val_mask], data.y[data.val_mask])
val_acc = (eval_output.argmax(dim=1) == data.y)[data.val_mask].sum() / data.val_mask.sum()
test_acc = (eval_output.argmax(dim=1) == data.y)[data.test_mask].sum() / data.test_mask.sum()
bar.set_postfix(train_loss='{:.4f}'.format(loss.item()),
val_loss='{:.4f}'.format(val_loss.item()),
val_acc='{:.4f}'.format(val_acc.item()))
# print('Epoch %d: train loss: %.4f, val loss: %.4f, val acc: %.4f, test acc %.4f'%(epoch, loss, val_loss, val_acc, test_acc))
writer.add_scalar('{:s}/Loss-Train'.format(args.dataset, args.net), loss.item(), ite)
writer.add_scalar('{:s}/Loss-Val'.format(args.dataset, args.net), val_loss.item(), ite)
writer.add_scalar('{:s}/Accuracy-Val'.format(args.dataset, args.net), val_acc.item(), ite)
writer.add_scalar('{:s}/Accuracy-Test'.format(args.dataset, args.net), test_acc.item(), ite)
if not args.no_earlystop:
if val_loss < best_val_loss:
best_epoch = ite
best_val_acc = val_acc
best_val_loss = val_loss
best_test_acc = test_acc
bad_epochs = 0
else:
bad_epochs = bad_epochs + 1
if bad_epochs >= args.patience and best_epoch > 50: # warm_up == 50
print('\nBest epoch %d: train loss: %.4f, val loss: %.4f, val acc: %.4f, test acc %.4f'%(best_epoch, loss, best_val_loss, best_val_acc, best_test_acc))
# print(model)
break
if args.no_earlystop:
best_test_acc = test_acc
best_val_acc = val_acc
return best_test_acc.item(), best_val_acc.item()
def main():
# os.environ['CUDA_VISIBLE_DEVICES'] = '1,2'
parser = argparse.ArgumentParser()
parser.add_argument('--no-cuda', action='store_true', default=False,
help='Disables CUDA training.')
parser.add_argument('--cuda_device', type=int, default=0, help='Cuda device.')
parser.add_argument('--seed', type=int, default=42, help='Random seed (no use).')
parser.add_argument('--nhid', type=int, default=32, help='hidden layer')
parser.add_argument('--epochs', type=int, default=1000,
help='Number of epochs to train.')
parser.add_argument('--lr', type=float, default=0.01,
help='Initial learning rate.')
parser.add_argument('--dataset', type=str, default='pubmed', help='Data set.')
parser.add_argument('--no_earlystop', action='store_true', default=False, help='Set to voyage the whole epochs.')
parser.add_argument('--patience', type=int, default=100,
help='Heads of distribution attention.')
parser.add_argument('--runs', type=int, default=3,
help='Runs to train.')
parser.add_argument('--dropout', type=float, default=0.,
help='Dropout rate for feature transformation.')
parser.add_argument('--drop_prop', type=float, default=0.,
help='Dropout rate for propagation.')
parser.add_argument("--net", type=str, default='mlp', choices=['bern', 'beta', 'gprgnn', 'cheb', 'lag', 'gcn', 'lag2', 'mlp', 'gcn', 'gat', 'sage', 'cheb2', 'cheb4'])
# beta parameters
parser.add_argument('--alpha', type=int, default=2, help='Alpha in (1, 2, ..., alpha).')
parser.add_argument('--K', type=int, default=10)
parser.add_argument('--init', type=str, default='sgc', choices=['sgc', 'ppr', 'nppr', 'random'])
parser.add_argument('--relu', action='store_true', default=False, help='Use the RELU on thetas')
parser.add_argument('--act', type=str, default='relu', choices=['relu', 'leaky', 'tanh', 'sigmoid', 'none'])
# training parameters
parser.add_argument('--weight_decay', type=float, default=5e-4, help='Weight decay for linear')
parser.add_argument('--prop_lr', type=float, default=0.01, help='Weight decay for linear')
parser.add_argument('--optim', type=str, default='adam', choices=['sgd', 'adam', 'adamax', 'adagrad', 'asdg', 'delta'])
# split parameters
parser.add_argument('--split', type=str, default='random', choices=['random', 'set', 'grand'])
parser.add_argument('--train_proportion', type=float, default=0.6, help='Train proportion')
parser.add_argument('--val_proportion', type=float, default=0.2, help='Valid proportion')
parser.add_argument('--idx', type=int, default=0, help='For multiple graphs, e.g. ppi has 20 graphs')
# best training params from bernnet
parser.add_argument('--no_best_hyper_params', action='store_true', default=False, help='Use the best hyper parameters from bernnet')
parser.add_argument('--sample', type=str, default='node', choices=['node', 'edge'])
# clar
parser.add_argument('--S', type=int, default=4)
parser.add_argument('--pos', type=float, default=0.01)
parser.add_argument('--neg', type=float, default=0.01)
args = parser.parse_args()
if args.dataset.lower() in ['cs', 'physics']:
args.split = 'grand'
elif args.dataset.lower() in ['computers', 'photo', 'chameleon', 'squirrel', 'actor', 'texas', 'cornell']:
args.split = 'random'
if not args.no_best_hyper_params:
set_best_train_args(args)
args.runs = 5
args.nhid = 32
print(args)
torch.set_num_threads(1)
writer = SummaryWriter(comment='_reg_pos_{:.4f}_neg_{:.4f}_S_{:d}_model_{:s}'.format(args.pos, args.neg, args.S, args.net))
seeds=[0,1,2,3,4,5,6,7,8,9]
pbar = tqdm.tqdm(range(args.runs))
perm = torch.randperm(len(seeds))
rand_seeds = torch.LongTensor(seeds)[perm]
test_accs = []
val_accs = []
for idx in pbar:
test_acc, val_acc = one_run(args, seed=rand_seeds[idx], run=idx, bar=pbar, writer=writer)
test_accs.append(test_acc)
val_accs.append(val_acc)
print('Average Test acc for {:s}: {:.4f}, Val acc: {:.4f}'.format(args.dataset, torch.Tensor(test_accs).mean().item(), torch.Tensor(val_accs).mean().item()))
res = {
'pos': [args.pos],
'neg': [args.neg],
'S': [args.S],
'test_acc': [torch.Tensor(test_accs).mean().item()]
}
df = pd.DataFrame(res)
df.to_csv('{:s}_dataset_{:s}.csv'.format(args.net, args.dataset), mode='a+', header=False)
writer.close()
if __name__ == '__main__':
main()