-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathdata_cleaning.py
86 lines (67 loc) · 3.69 KB
/
data_cleaning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import numpy as np
import pandas as pd
class CleanData:
def __init__(self, df_train, df_test, run_train):
self.df_train = df_train
self.df_test = df_test
self.run_train = run_train
def clean(self):
if self.run_train:
# TRAIN set
#updating the same dataframe by dropping the index columns from clear sky model
self.df_train.drop(['index'], axis=1, inplace=True)
# Resetting Index
self.df_train.reset_index(drop=True, inplace=True)
# TEST set
#updating the same dataframe by dropping the index columns from clear sky model
self.df_test.drop(['index'],axis=1, inplace=True)
# Resetting Index
self.df_test.reset_index(drop=True, inplace=True)
### Managing missing values
if self.run_train:
# TRAIN set
#Dropping rows with two or more -9999.9 values in columns
missing_data_indices = np.where((self.df_train <=-9999.9).apply(sum, axis=1)>=2)[0] #Get indices of all rows with 2 or more -9999.9
self.df_train.drop(missing_data_indices, axis=0, inplace=True) # Drop those inddices
print('self.df_train.shape:',self.df_train.shape)
self.df_train.reset_index(drop=True, inplace=True) # 2nd time - Resetting index
# TEST set
missing_data_indices_test = np.where((self.df_test <= -9999.9).apply(sum, axis=1)>=2)[0]
self.df_test.drop(missing_data_indices_test, axis=0, inplace=True)
print('self.df_test.shape:',self.df_test.shape)
self.df_test.reset_index(drop=True, inplace=True) # 2nd time - Reseting Index
#### First resetting index after dropping rows in the previous part of the code
if self.run_train:
# TRAIN set
one_miss_train_idx = np.where((self.df_train <=-9999.9).apply(sum, axis=1)==1)[0]
print('(len(one_miss_train_idx)',len(one_miss_train_idx))
self.df_train.shape
col_names = self.df_train.columns
from collections import defaultdict
stats = defaultdict(int)
total_single_missing_values = 0
for name in col_names:
col_mean = self.df_train[~(self.df_train[name] == -9999.9)][name].mean()
missing_indices = np.where((self.df_train[name] == -9999.9))
stats[name] = len(missing_indices[0])
self.df_train[name].loc[missing_indices] = col_mean
total_single_missing_values += sum(self.df_train[name] == -9999.9)
train = np.where((self.df_train <=-9999.9).apply(sum, axis=1)==1)[0]
print('len(train):',len(train))
# TEST set
one_miss_test_idx = np.where((self.df_test <=-9999.9).apply(sum, axis=1)==1)[0]
len(one_miss_test_idx)
col_names_test = self.df_test.columns
from collections import defaultdict
stats_test = defaultdict(int)
total_single_missing_values_test = 0
for name in col_names_test:
col_mean = self.df_test[~(self.df_test[name] == -9999.9)][name].mean()
missing_indices = np.where((self.df_test[name] == -9999.9))
stats_test[name] = len(missing_indices[0])
self.df_test[name].loc[missing_indices] = col_mean
total_single_missing_values_test += sum(self.df_test[name] == -9999.9)
test = np.where((self.df_test <=-9999.9).apply(sum, axis=1)==1)[0]
print('len(test):', len(test))
print('self.df_test.shape:', self.df_test.shape)
return self.df_train, self.df_test