-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathLosses.py
executable file
·314 lines (264 loc) · 10.6 KB
/
Losses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
import numpy as np
import torch
import torch.nn.functional as F
from torch import nn
from torch.autograd import Variable
try:
from itertools import ifilterfalse
except ImportError: # py3k
from itertools import filterfalse
eps = 1e-6
def soft_dice_loss(outputs, targets, per_image=False, per_channel=False):
batch_size, n_channels = outputs.size(0), outputs.size(1)
eps = 1e-6
n_parts = 1
if per_image:
n_parts = batch_size
if per_channel:
n_parts = batch_size * n_channels
dice_target = targets.contiguous().view(n_parts, -1).float()
dice_output = outputs.contiguous().view(n_parts, -1)
intersection = torch.sum(dice_output * dice_target, dim=1)
union = torch.sum(dice_output, dim=1) + torch.sum(dice_target, dim=1) + eps
loss = (1 - (2 * intersection + eps) / union).mean()
return loss
def dice_metric(preds, trues, per_image=False, per_channel=False):
preds = preds.float()
return 1 - soft_dice_loss(preds, trues, per_image, per_channel)
def jaccard(outputs, targets, per_image=False, non_empty=False, min_pixels=5):
batch_size = outputs.size()[0]
eps = 1e-3
if not per_image:
batch_size = 1
dice_target = targets.contiguous().view(batch_size, -1).float()
dice_output = outputs.contiguous().view(batch_size, -1)
target_sum = torch.sum(dice_target, dim=1)
intersection = torch.sum(dice_output * dice_target, dim=1)
losses = 1 - (intersection + eps) / (torch.sum(dice_output + dice_target, dim=1) - intersection + eps)
if non_empty:
assert per_image == True
non_empty_images = 0
sum_loss = 0
for i in range(batch_size):
if target_sum[i] > min_pixels:
sum_loss += losses[i]
non_empty_images += 1
if non_empty_images == 0:
return 0
else:
return sum_loss / non_empty_images
return losses.mean()
class DiceLoss(nn.Module):
def __init__(self, weight=None, size_average=True, per_image=False):
super().__init__()
self.size_average = size_average
self.register_buffer('weight', weight)
self.per_image = per_image
def forward(self, input, target):
return soft_dice_loss(input, target, per_image=self.per_image)
class JaccardLoss(nn.Module):
def __init__(self, weight=None, size_average=True, per_image=False, non_empty=False, apply_sigmoid=False,
min_pixels=5):
super().__init__()
self.size_average = size_average
self.register_buffer('weight', weight)
self.per_image = per_image
self.non_empty = non_empty
self.apply_sigmoid = apply_sigmoid
self.min_pixels = min_pixels
def forward(self, input, target):
if self.apply_sigmoid:
input = torch.sigmoid(input)
return jaccard(input, target, per_image=self.per_image, non_empty=self.non_empty, min_pixels=self.min_pixels)
class StableBCELoss(nn.Module):
def __init__(self):
super(StableBCELoss, self).__init__()
def forward(self, input, target):
input = input.float().view(-1)
target = target.float().view(-1)
neg_abs = - input.abs()
loss = input.clamp(min=0) - input * target + (1 + neg_abs.exp()).log()
return loss.mean()
class ComboLoss(nn.Module):
def __init__(self, weights, per_image=False, channel_weights=[1.], channel_losses=None):
super().__init__()
self.weights = weights
self.bce = StableBCELoss()
self.dice = DiceLoss(per_image=False)
self.jaccard = JaccardLoss(per_image=False)
self.lovasz = LovaszLoss(per_image=per_image)
self.lovasz_sigmoid = LovaszLossSigmoid(per_image=per_image)
self.focal = FocalLoss2d()
self.mapping = {'bce': self.bce,
'dice': self.dice,
'focal': self.focal,
'jaccard': self.jaccard,
'lovasz': self.lovasz,
'lovasz_sigmoid': self.lovasz_sigmoid}
self.expect_sigmoid = {'dice', 'focal', 'jaccard', 'lovasz_sigmoid'}
self.per_channel = {'dice', 'jaccard', 'lovasz_sigmoid'}
self.values = {}
self.channel_weights = channel_weights
self.channel_losses = channel_losses
def forward(self, outputs, targets):
loss = 0
weights = self.weights
sigmoid_input = torch.sigmoid(outputs)
for k, v in weights.items():
if not v:
continue
val = 0
if k in self.per_channel:
channels = targets.size(1)
for c in range(channels):
if not self.channel_losses or k in self.channel_losses[c]:
val += self.channel_weights[c] * self.mapping[k](
sigmoid_input[:, c, ...] if k in self.expect_sigmoid else outputs[:, c, ...],
targets[:, c, ...])
else:
val = self.mapping[k](sigmoid_input if k in self.expect_sigmoid else outputs, targets)
self.values[k] = val
loss += self.weights[k] * val
return loss.clamp(min=1e-5)
def lovasz_grad(gt_sorted):
"""
Computes gradient of the Lovasz extension w.r.t sorted errors
See Alg. 1 in paper
"""
p = len(gt_sorted)
gts = gt_sorted.sum()
intersection = gts.float() - gt_sorted.float().cumsum(0)
union = gts.float() + (1 - gt_sorted).float().cumsum(0)
jaccard = 1. - intersection / union
if p > 1: # cover 1-pixel case
jaccard[1:p] = jaccard[1:p] - jaccard[0:-1]
return jaccard
def lovasz_hinge(logits, labels, per_image=True, ignore=None):
"""
Binary Lovasz hinge loss
logits: [B, H, W] Variable, logits at each pixel (between -\infty and +\infty)
labels: [B, H, W] Tensor, binary ground truth masks (0 or 1)
per_image: compute the loss per image instead of per batch
ignore: void class id
"""
if per_image:
loss = mean(lovasz_hinge_flat(*flatten_binary_scores(log.unsqueeze(0), lab.unsqueeze(0), ignore))
for log, lab in zip(logits, labels))
else:
loss = lovasz_hinge_flat(*flatten_binary_scores(logits, labels, ignore))
return loss
def lovasz_hinge_flat(logits, labels):
"""
Binary Lovasz hinge loss
logits: [P] Variable, logits at each prediction (between -\infty and +\infty)
labels: [P] Tensor, binary ground truth labels (0 or 1)
ignore: label to ignore
"""
if len(labels) == 0:
# only void pixels, the gradients should be 0
return logits.sum() * 0.
signs = 2. * labels.float() - 1.
errors = (1. - logits * Variable(signs))
errors_sorted, perm = torch.sort(errors, dim=0, descending=True)
perm = perm.data
gt_sorted = labels[perm]
grad = lovasz_grad(gt_sorted)
loss = torch.dot(F.relu(errors_sorted), Variable(grad))
return loss
def flatten_binary_scores(scores, labels, ignore=None):
"""
Flattens predictions in the batch (binary case)
Remove labels equal to 'ignore'
"""
scores = scores.view(-1)
labels = labels.view(-1)
if ignore is None:
return scores, labels
valid = (labels != ignore)
vscores = scores[valid]
vlabels = labels[valid]
return vscores, vlabels
def lovasz_sigmoid(probas, labels, per_image=False, ignore=None):
"""
Multi-class Lovasz-Softmax loss
probas: [B, C, H, W] Variable, class probabilities at each prediction (between 0 and 1)
labels: [B, H, W] Tensor, ground truth labels (between 0 and C - 1)
only_present: average only on classes present in ground truth
per_image: compute the loss per image instead of per batch
ignore: void class labels
"""
if per_image:
loss = mean(lovasz_sigmoid_flat(*flatten_binary_scores(prob.unsqueeze(0), lab.unsqueeze(0), ignore))
for prob, lab in zip(probas, labels))
else:
loss = lovasz_sigmoid_flat(*flatten_binary_scores(probas, labels, ignore))
return loss
def lovasz_sigmoid_flat(probas, labels):
"""
Multi-class Lovasz-Softmax loss
probas: [P, C] Variable, class probabilities at each prediction (between 0 and 1)
labels: [P] Tensor, ground truth labels (between 0 and C - 1)
only_present: average only on classes present in ground truth
"""
fg = labels.float()
errors = (Variable(fg) - probas).abs()
errors_sorted, perm = torch.sort(errors, 0, descending=True)
perm = perm.data
fg_sorted = fg[perm]
loss = torch.dot(errors_sorted, Variable(lovasz_grad(fg_sorted)))
return loss
def symmetric_lovasz(outputs, targets, ):
return (lovasz_hinge(outputs, targets) + lovasz_hinge(-outputs, 1 - targets)) / 2
def mean(l, ignore_nan=False, empty=0):
"""
nanmean compatible with generators.
"""
l = iter(l)
if ignore_nan:
l = ifilterfalse(np.isnan, l)
try:
n = 1
acc = next(l)
except StopIteration:
if empty == 'raise':
raise ValueError('Empty mean')
return empty
for n, v in enumerate(l, 2):
acc += v
if n == 1:
return acc
return acc / n
class LovaszLoss(nn.Module):
def __init__(self, ignore_index=255, per_image=True):
super().__init__()
self.ignore_index = ignore_index
self.per_image = per_image
def forward(self, outputs, targets):
outputs = outputs.contiguous()
targets = targets.contiguous()
return symmetric_lovasz(outputs, targets)
class LovaszLossSigmoid(nn.Module):
def __init__(self, ignore_index=255, per_image=True):
super().__init__()
self.ignore_index = ignore_index
self.per_image = per_image
def forward(self, outputs, targets):
outputs = outputs.contiguous()
targets = targets.contiguous()
return lovasz_sigmoid(outputs, targets, per_image=self.per_image, ignore=self.ignore_index)
class FocalLoss2d(nn.Module):
def __init__(self, gamma=2, ignore_index=255):
super().__init__()
self.gamma = gamma
self.ignore_index = ignore_index
def forward(self, outputs, targets):
outputs = outputs.contiguous()
targets = targets.contiguous()
eps = 1e-8
non_ignored = targets.view(-1) != self.ignore_index
targets = targets.view(-1)[non_ignored].float()
outputs = outputs.contiguous().view(-1)[non_ignored]
outputs = torch.clamp(outputs, eps, 1. - eps)
targets = torch.clamp(targets, eps, 1. - eps)
pt = (1 - targets) * (1 - outputs) + targets * outputs
return (-(1. - pt) ** self.gamma * torch.log(pt)).mean()