-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathactor.py
734 lines (646 loc) · 26.7 KB
/
actor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
#!/usr/bin/env python3
# Copyright (c) Stanford University and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
r"""Implement an actor."""
import gc
import os
import pickle
import torch
from acqfs import qBOAcqf, qMultiStepHEntropySearch
from amortized_network import AmortizedNetwork
from botorch.sampling.normal import SobolQMCNormalSampler
from utils import (
draw_loss_and_cost,
generate_random_points_batch,
generate_random_rotation_matrix,
rotate_points,
)
class Actor:
r"""Actor class."""
def __init__(self, parms):
"""Initialize the actor.
Args:
parms (Parameters): A set of hyperparameters
"""
self.parms = parms
if self.parms.algo == "HES":
self.acqf_class = qMultiStepHEntropySearch
if self.parms.amortized:
self.maps = AmortizedNetwork(
input_dim=self.parms.x_dim + self.parms.y_dim,
output_dim=self.parms.x_dim,
hidden_dim=self.parms.hidden_dim,
n_actions=self.parms.n_actions,
output_bounds=self.parms.bounds,
discrete=parms.env_discretized,
num_categories=self.parms.num_categories,
).to(dtype=self.parms.torch_dtype, device=self.parms.device)
print(
"Number of AmortizedNet params:",
sum(p.numel() for p in self.maps.parameters() if p.requires_grad),
)
self._parameters = list(self.maps.parameters())
else:
self.maps = []
else:
self.acqf_class = qBOAcqf
self.maps = []
# Initialize some actor attributes
self.algo_lookahead_steps = self.parms.algo_lookahead_steps
self.acqf = None
def reset_parameters(
self,
buffer,
bo_iter=0,
embedder=None,
prev_chosen_idx=0,
):
r"""Reset actor parameters.
With amortized version, this function optimizes the
output X of acquisition function to randomized X.
While in the non-amortized version, this function
just initializes random X.
Args:
prev_X (Tensor): Previous design points - Decoded in case of discrete
prev_y (Tensor): Previous observations
"""
print("Resetting actor parameters...")
# Inititalize required variables
prev_X = buffer["x"][-1:].expand(self.parms.n_restarts, -1)
prev_y = buffer["y"][-1:].expand(self.parms.n_restarts, -1)
if self.parms.algo_ts:
nf_design_pts = [1] * self.algo_lookahead_steps
elif "MSL" not in self.parms.algo:
if self.algo_lookahead_steps == 0:
nf_design_pts = []
elif self.algo_lookahead_steps == 1:
nf_design_pts = [64]
elif self.algo_lookahead_steps == 2:
nf_design_pts = [64, 8] # [64, 64]
elif self.algo_lookahead_steps == 3:
nf_design_pts = [64, 4, 2] # [64, 32, 8]
elif self.algo_lookahead_steps >= 4:
nf_design_pts = [64, 4, 2, 1] # [16, 8, 8, 8]
nf_design_pts = nf_design_pts + [1] * (self.algo_lookahead_steps - 4)
else:
nf_design_pts = [32, 2, 1, 1][: self.algo_lookahead_steps]
if self.parms.amortized:
prev_hid_state = buffer["h"][-1:].clone().expand(self.parms.n_restarts, -1)
optimizer = torch.optim.AdamW(
self._parameters, lr=0.01
) # self.parms.acq_opt_lr)
n_samples = self.parms.n_restarts # 1000
d = self.parms.x_dim
X = []
for s in range(self.algo_lookahead_steps):
if s == 0:
prev_points = prev_X[0:1]
n_points = n_samples
else:
prev_points = X[-1]
n_points = nf_design_pts[s - 1]
x = generate_random_points_batch(
prev_points, self.parms.cost_func_hypers["radius"], n_points
)
x = torch.clamp(
x,
max=0.99,
min=0.01,
)
X.append(
x.to(
device=self.parms.device,
dtype=self.parms.torch_dtype,
).reshape(-1, self.parms.x_dim)
)
if len(X) == 0:
prev_points = prev_X[0:1]
n_points = n_samples * self.parms.n_actions
else:
prev_points = X[-1]
n_points = nf_design_pts[-1] * self.parms.n_actions
A = (
generate_random_points_batch(
prev_points, self.parms.cost_func_hypers["radius"], n_points
)
.to(
device=self.parms.device,
dtype=self.parms.torch_dtype,
)
.reshape(-1, self.parms.x_dim)
)
X.append(
torch.clamp(
A,
max=0.99,
min=0.01,
).detach()
)
X = torch.stack(X, dim=0)
self.hidden_noise = torch.randn(n_samples, self.parms.hidden_dim).to(X[-1])
prev_hid_state = prev_hid_state + self.hidden_noise
early_stop_count = 0
best_loss = float("inf")
for ep in range(300):
outputs = []
local_prev_hid_state = prev_hid_state
prev = prev_X[0].expand(n_samples, self.parms.x_dim)
y = prev_y[0].expand(n_samples, self.parms.y_dim)
for j in range(self.algo_lookahead_steps):
output, hidden_state = self.maps(
prev,
y,
local_prev_hid_state,
return_actions=False,
enable_noise=False,
)
outputs.append(output)
prev = output
y = (
self.acqf.model(output.unsqueeze(-2))
.sample(sample_shape=torch.Size([nf_design_pts[j]]))
.reshape(-1, 1)
)
local_prev_hid_state = hidden_state
output, hidden_state = self.maps(
prev,
y,
local_prev_hid_state,
return_actions=True,
enable_noise=False,
)
outputs.append(output)
outputs = torch.stack(outputs, dim=0)
loss = torch.mean(abs(X - outputs))
if ep % 10 == 0:
print("Loss:", loss.item())
if loss < best_loss:
best_loss = loss
early_stop_count = 0
else:
early_stop_count += 1
loss.backward()
optimizer.step()
optimizer.zero_grad()
if early_stop_count >= 50:
break
else:
if bo_iter == 0 or not self.parms.algo_ts:
self.maps = []
local_maps = []
for s in range(self.algo_lookahead_steps):
if s == 0:
prev_points = prev_X[0]
n_points = self.parms.n_restarts
else:
prev_points = local_maps[-1]
n_points = nf_design_pts[s - 1]
x = generate_random_points_batch(
prev_points, self.parms.cost_func_hypers["radius"], n_points
)
local_maps.append(x)
for s in range(self.algo_lookahead_steps):
x = (
local_maps[s]
.reshape(-1, self.parms.x_dim)
.to(
device=self.parms.device,
dtype=self.parms.torch_dtype,
)
)
if embedder is not None:
x = embedder.decode(x)
x = torch.nn.functional.one_hot(
x, num_classes=self.parms.num_categories
).to(self.parms.torch_dtype)
else:
x = torch.clamp(
x,
max=0.99,
min=0.01,
)
x = -torch.log(1 / x - 1)
self.maps.append(x.requires_grad_(True))
if len(local_maps) == 0:
prev_points = prev_X[0]
n_points = self.parms.n_restarts * self.parms.n_actions
else:
prev_points = local_maps[-1]
n_points = nf_design_pts[-1] * self.parms.n_actions
a = (
generate_random_points_batch(
prev_points, self.parms.cost_func_hypers["radius"], n_points
)
.reshape(-1, self.parms.x_dim)
.to(
device=self.parms.device,
dtype=self.parms.torch_dtype,
)
)
if embedder is not None:
a = embedder.decode(a)
a = torch.nn.functional.one_hot(
a, num_classes=self.parms.num_categories
).to(self.parms.torch_dtype)
else:
a = torch.clamp(
a,
max=0.99,
min=0.01,
)
a = -torch.log(1 / a - 1)
self.maps.append(a.requires_grad_(True))
else:
# Rotate previous best trajectory
if embedder is not None:
self.maps = [
embedder.encode(x.requires_grad_(False)) for x in self.maps
]
local_maps = []
for maps in self.maps:
local_maps.append(
torch.nn.functional.one_hot(
embedder.decode(maps),
num_classes=self.parms.num_categories,
).to(self.parms.torch_dtype)
)
self.maps = [embedder.encode(x) for x in local_maps]
else:
self.maps = [
torch.sigmoid(x.requires_grad_(False)) for x in self.maps
]
# 1. Pick the best trajectory
prev_chosen_idx = prev_chosen_idx.long()
prev_points = prev_X[0]
# >>> n_restarts x x_dim
random_R_matrices = [torch.eye(self.parms.x_dim).to(prev_X)]
random_R_matrices.extend(
[
generate_random_rotation_matrix(self.parms.x_dim).to(prev_X)
for _ in range(self.parms.n_restarts - 1)
]
)
random_R_matrices = torch.stack(random_R_matrices, dim=0)
# >>> n_restarts x x_dim x x_dim
##### Work for TS only #####
self.maps[0][:] = self.maps[1][prev_chosen_idx]
for lah in range(2, self.algo_lookahead_steps + 1):
lah_points = self.maps[lah].reshape(
*nf_design_pts[:lah], self.parms.n_restarts, self.parms.x_dim
)
best_traj_lah = lah_points[..., prev_chosen_idx, :]
# >>> ... x x_dim
list_rotated = rotate_points(
best_traj_lah.reshape(-1, self.parms.x_dim),
random_R_matrices,
self.maps[0][prev_chosen_idx],
).transpose(0, 1)
list_rotated = torch.clamp(
list_rotated,
max=0.99,
min=0.01,
)
self.maps[lah - 1] = list_rotated.reshape(-1, self.parms.x_dim)
a = generate_random_points_batch(
self.maps[self.algo_lookahead_steps - 1],
self.parms.cost_func_hypers["radius"],
nf_design_pts[-1] * self.parms.n_actions,
).to(
device=self.parms.device,
dtype=self.parms.torch_dtype,
)
a = torch.clamp(
a,
max=0.99,
min=0.01,
)
self.maps[self.algo_lookahead_steps] = a.reshape(-1, self.parms.x_dim)
if embedder is not None:
self.maps = [
torch.nn.functional.one_hot(
embedder.decode(x), num_classes=self.parms.num_categories
)
.to(self.parms.torch_dtype)
.requires_grad_(True)
for x in self.maps
]
else:
self.maps = [
(-torch.log(1 / x - 1)).requires_grad_(True) for x in self.maps
]
self._parameters = self.maps
def construct_acqf(self, surr_model, buffer, **kwargs):
"""Contruct aquisition function.
Args:
surr_model: Surrogate model.
buffer: A ReplayBuffer object containing the data.
Raises:
ValueError: If defined algo is not implemented.
Returns:
AcquisitionFunction: An aquisition function instance
"""
del self.acqf
gc.collect()
torch.cuda.empty_cache()
if self.parms.algo_ts:
nf_design_pts = [1] * self.algo_lookahead_steps
elif "MSL" not in self.parms.algo:
if self.algo_lookahead_steps == 0:
nf_design_pts = []
elif self.algo_lookahead_steps == 1:
nf_design_pts = [64]
elif self.algo_lookahead_steps == 2:
nf_design_pts = [64, 8] # [64, 64]
elif self.algo_lookahead_steps == 3:
nf_design_pts = [64, 4, 2] # [64, 32, 8]
elif self.algo_lookahead_steps >= 4:
nf_design_pts = [64, 4, 2, 1] # [16, 8, 8, 8]
nf_design_pts = nf_design_pts + [1] * (self.algo_lookahead_steps - 4)
else:
nf_design_pts = [32, 2, 1, 1][: self.algo_lookahead_steps]
if self.parms.algo != "HES":
sampler = SobolQMCNormalSampler(
sample_shape=self.parms.n_samples, seed=0, resample=False
)
else:
sampler = None
self.acqf = self.acqf_class(
name=self.parms.algo,
model=surr_model,
lookahead_steps=self.algo_lookahead_steps,
n_actions=self.parms.n_actions,
n_fantasy_at_design_pts=nf_design_pts,
n_fantasy_at_action_pts=self.parms.n_samples,
loss_function_class=self.parms.loss_function_class,
loss_func_hypers=self.parms.loss_func_hypers,
cost_function_class=self.parms.cost_function_class,
cost_func_hypers=self.parms.cost_func_hypers,
enable_ts=self.parms.algo_ts,
sampler=sampler,
best_f=buffer["y"].max(),
)
def query(
self,
buffer,
iteration: int,
embedder=None,
f_posterior=None,
save_trajectory=True,
):
r"""Compute the next design point.
Args:
prev_X (Tensor): Previous design points.
prev_y (Tensor): Previous observations.
prev_hid_state (Tensor): Previous hidden state.
iteration: The current iteration.
"""
assert self.acqf is not None, "Acquisition function is not initialized."
# Inititalize required variables
prev_X = buffer["x"][iteration - 1 : iteration].expand(
self.parms.n_restarts, -1
)
if embedder is not None:
# Discretize: Continuous -> Discrete
prev_X = embedder.decode(prev_X)
prev_X = torch.nn.functional.one_hot(
prev_X, num_classes=self.parms.num_categories
).to(dtype=self.parms.torch_dtype)
# >>> n_restarts x x_dim x n_categories
prev_y = buffer["y"][iteration - 1 : iteration].expand(
self.parms.n_restarts, -1
)
prev_hid_state = buffer["h"][iteration - 1 : iteration].expand(
self.parms.n_restarts, -1
)
if self.parms.amortized:
# if iteration - self.parms.n_initial_points > 0:
# self.hidden_noise = torch.randn(self.parms.n_restarts, self.parms.hidden_dim).to(prev_X) * 1e-2
# self.hidden_noise[0] = 0.0
# if iteration - self.parms.n_initial_points == 0:
if True:
prev_hid_state = prev_hid_state + self.hidden_noise
prev_cost = (
buffer["cost"][self.parms.n_initial_points : iteration].sum()
if iteration > self.parms.n_initial_points
else 0.0
)
# Optimize the acquisition function
optimizer = torch.optim.AdamW(self._parameters, lr=self.parms.acq_opt_lr)
# lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
# optimizer, T_max=self.parms.acq_opt_iter
# )
best_loss = torch.tensor([float("inf")], device=self.parms.device)
best_cost = torch.tensor([float("inf")], device=self.parms.device)
best_next_X = None
best_actions = None
best_hidden_state = None
best_map = None
best_KL = 0
early_stop = 0
losses = []
costs = []
if self.parms.algo.startswith("HES"):
self.acqf.dump_model(f=f_posterior)
if self.parms.algo_ts and f_posterior is None:
# Save self.acqf.f using pickle
pickle.dump(
self.acqf.f,
open(
os.path.join(
self.parms.save_dir, f"posterior_sample_{iteration}.pkl"
),
"wb",
),
)
########## TESTING ###########
saved_trajectory = []
saved_loss = []
saved_cost = []
##############################
if self.parms.amortized:
original_sd = self.maps.state_dict()
original_maps = AmortizedNetwork(
input_dim=self.parms.x_dim + self.parms.y_dim,
output_dim=self.parms.x_dim,
hidden_dim=self.parms.hidden_dim,
n_actions=self.parms.n_actions,
output_bounds=self.parms.bounds,
discrete=self.parms.env_discretized,
num_categories=self.parms.num_categories,
).to(dtype=self.parms.torch_dtype, device=self.parms.device)
original_maps.load_state_dict(original_sd)
cosine_loss_fn = torch.nn.CosineSimilarity(dim=-1, eps=1e-6)
########## TESTING ###########
# saved_trajectory = []
# saved_loss = []
# saved_cost = []
##############################
if self.parms.amortized:
original_sd = self.maps.state_dict()
original_maps = AmortizedNetwork(
input_dim=self.parms.x_dim + self.parms.y_dim,
output_dim=self.parms.x_dim,
hidden_dim=self.parms.hidden_dim,
n_actions=self.parms.n_actions,
output_bounds=self.parms.bounds,
discrete=self.parms.env_discretized,
num_categories=self.parms.num_categories,
).to(dtype=self.parms.torch_dtype, device=self.parms.device)
original_maps.load_state_dict(original_sd)
cosine_loss_fn = torch.nn.CosineSimilarity(dim=-1, eps=1e-6)
for ep in range(self.parms.acq_opt_iter):
if not self.parms.amortized and not self.parms.env_discretized:
local_maps = [torch.sigmoid(x) for x in self.maps]
if save_trajectory:
saved_trajectory.append(
[x.cpu().detach().tolist() for x in local_maps]
)
else:
local_maps = self.maps
return_dict = self.acqf.forward(
prev_X=prev_X,
prev_y=prev_y,
prev_hid_state=prev_hid_state,
maps=local_maps,
embedder=embedder,
prev_cost=prev_cost,
enable_noise=False, # (iteration > self.parms.n_initial_points),
)
acqf_loss = return_dict["acqf_loss"]
acqf_cost = return_dict["acqf_cost"]
saved_loss.append(return_dict["acqf_loss"].tolist())
saved_cost.append(return_dict["acqf_cost"].tolist())
# >> n_restart
if self.parms.amortized:
with torch.no_grad():
original_return_dict = self.acqf.forward(
prev_X=prev_X,
prev_y=prev_y,
prev_hid_state=prev_hid_state,
maps=original_maps,
embedder=embedder,
prev_cost=prev_cost,
)
KL = 0
for lhi in range(self.algo_lookahead_steps):
KL = (
KL
+ 1
- cosine_loss_fn(
original_return_dict["X"][lhi], return_dict["X"][lhi]
).flatten()
)
KL = (
KL
+ 1
- cosine_loss_fn(
original_return_dict["actions"], return_dict["actions"]
).flatten()
)
else:
KL = 0
if save_trajectory and (self.parms.amortized or self.parms.env_discretized):
saved_trajectory.append(
[x.cpu().detach().tolist() for x in return_dict["X"]]
)
losses.append(acqf_loss.mean().item())
costs.append(acqf_cost.mean().item())
loss = acqf_loss + abs(self.parms.budget - acqf_cost) + KL
chosen_idx = torch.argmin(loss)
if ep == 0 or loss[chosen_idx] < (best_loss + best_cost + best_KL).min():
best_loss = return_dict["acqf_loss"].detach()
best_cost = return_dict["acqf_cost"].detach()
best_next_X = [x.detach() for x in return_dict["X"]]
best_actions = return_dict["actions"].detach()
best_hidden_state = (
[x.detach() for x in return_dict["hidden_state"]]
if return_dict["hidden_state"]
else None
)
if self.parms.amortized:
best_KL = KL.detach()
best_map = self.maps.state_dict()
early_stop = 0
else:
if iteration > self.parms.n_initial_points or ep >= 200:
early_stop += 1
loss = loss.mean()
grads = torch.autograd.grad(loss, self._parameters, allow_unused=True)
for param, grad in zip(self._parameters, grads):
param.grad = grad
optimizer.step()
# lr_scheduler.step()
optimizer.zero_grad()
if ep % 50 == 0:
print(
f"Epoch {ep:05d}\tLoss {acqf_loss[chosen_idx].item():.5f}\tCost: {acqf_cost[chosen_idx].item():.5f}"
)
if early_stop > 50:
break
if self.parms.algo.startswith("HES"):
self.acqf.clean_dump_model()
# Choose which restart produce the lowest loss
idx = torch.argmin(best_loss + best_cost + best_KL)
########## TESTING ###########
if save_trajectory:
pickle.dump(
(saved_trajectory, idx),
open(self.parms.save_dir + f"/trajectory_{iteration}.pkl", "wb"),
)
pickle.dump(
(saved_loss, saved_cost),
open(self.parms.save_dir + f"/lossncost_{iteration}.pkl", "wb"),
)
##############################
# Best acqf loss
acqf_loss = best_loss[idx]
# >>> n_actions * 1
# Get next X as X_0 at idx
next_X = best_next_X[0][idx].reshape(1, -1)
# Get best actions
actions = best_actions[..., idx, :, :]
if embedder is not None:
# Discretize: Continuous -> Discrete
next_X = embedder.decode(next_X)
next_X = torch.nn.functional.one_hot(
next_X, num_classes=self.parms.num_categories
).to(dtype=self.parms.torch_dtype)
# >>> n_restarts x x_dim x n_categories
# Cat ==> Con
next_X = embedder.encode(next_X)
# Discretize: Continuous -> Discrete
actions = embedder.decode(actions)
actions = torch.nn.functional.one_hot(
actions, num_classes=self.parms.num_categories
).to(dtype=self.parms.torch_dtype)
# >>> n_restarts x x_dim x n_categories
# Cat ==> Con
actions = embedder.encode(actions)
# Get next hidden state of X_0 at idx
if self.parms.amortized:
hidden_state = best_hidden_state[0][idx : idx + 1]
# >>> n_restarts * hidden_dim
self.maps.load_state_dict(best_map)
else:
hidden_state = None
# Compute acqf loss
acqf_cost = self.acqf.cost_function(
prev_X=buffer["x"][iteration - 1 : iteration],
current_X=next_X,
previous_cost=prev_cost,
).detach()
# Draw losses by acq_opt_iter
if self.parms.plot:
draw_loss_and_cost(self.parms.save_dir, losses, costs, iteration)
return {
"all_losses": best_loss,
"all_costs": best_cost,
"loss": acqf_loss,
"cost": acqf_cost,
"next_X": next_X,
"actions": actions,
"hidden_state": hidden_state,
"chosen_idx": idx,
}