forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathweighted_tardiness_sat.cc
257 lines (230 loc) · 9.9 KB
/
weighted_tardiness_sat.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
// Copyright 2010-2018 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <math.h>
#include <numeric>
#include <vector>
#include "absl/strings/match.h"
#include "absl/strings/numbers.h"
#include "absl/strings/str_join.h"
#include "absl/strings/str_split.h"
#include "google/protobuf/text_format.h"
#include "ortools/base/commandlineflags.h"
#include "ortools/base/filelineiter.h"
#include "ortools/base/logging.h"
#include "ortools/base/timer.h"
#include "ortools/sat/cp_model.h"
#include "ortools/sat/model.h"
DEFINE_string(input, "examples/data/weighted_tardiness/wt40.txt",
"wt data file name.");
DEFINE_int32(size, 40, "Size of the problem in the wt file.");
DEFINE_int32(n, 28, "1-based instance number in the wt file.");
DEFINE_string(params, "", "Sat parameters in text proto format.");
DEFINE_int32(upper_bound, -1, "If positive, look for a solution <= this.");
namespace operations_research {
namespace sat {
// Solve a single machine problem with weighted tardiness cost.
void Solve(const std::vector<int64>& durations,
const std::vector<int64>& due_dates,
const std::vector<int64>& weights) {
const int num_tasks = durations.size();
CHECK_EQ(due_dates.size(), num_tasks);
CHECK_EQ(weights.size(), num_tasks);
// Display some statistics.
int horizon = 0;
for (int i = 0; i < num_tasks; ++i) {
horizon += durations[i];
LOG(INFO) << "#" << i << " duration:" << durations[i]
<< " due_date:" << due_dates[i] << " weight:" << weights[i];
}
// An simple heuristic solution: We choose the tasks from last to first, and
// always take the one with smallest cost.
std::vector<bool> is_taken(num_tasks, false);
int64 heuristic_bound = 0;
int64 end = horizon;
for (int i = 0; i < num_tasks; ++i) {
int next_task = -1;
int64 next_cost;
for (int j = 0; j < num_tasks; ++j) {
if (is_taken[j]) continue;
const int64 cost = weights[j] * std::max<int64>(0, end - due_dates[j]);
if (next_task == -1 || cost < next_cost) {
next_task = j;
next_cost = cost;
}
}
CHECK_NE(-1, next_task);
is_taken[next_task] = true;
end -= durations[next_task];
heuristic_bound += next_cost;
}
LOG(INFO) << "num_tasks: " << num_tasks;
LOG(INFO) << "The time horizon is " << horizon;
LOG(INFO) << "Trival cost bound = " << heuristic_bound;
// Create the model.
CpModelBuilder cp_model;
std::vector<IntervalVar> task_intervals(num_tasks);
std::vector<IntVar> task_starts(num_tasks);
std::vector<IntVar> task_durations(num_tasks);
std::vector<IntVar> task_ends(num_tasks);
std::vector<IntVar> tardiness_vars(num_tasks);
for (int i = 0; i < num_tasks; ++i) {
task_starts[i] = cp_model.NewIntVar(Domain(0, horizon - durations[i]));
task_durations[i] = cp_model.NewConstant(durations[i]);
task_ends[i] = cp_model.NewIntVar(Domain(durations[i], horizon));
task_intervals[i] = cp_model.NewIntervalVar(
task_starts[i], task_durations[i], task_ends[i]);
if (due_dates[i] == 0) {
tardiness_vars[i] = task_ends[i];
} else {
tardiness_vars[i] = cp_model.NewIntVar(
Domain(0, std::max<int64>(0, horizon - due_dates[i])));
// tardiness_vars >= end - due_date
cp_model.AddGreaterOrEqual(tardiness_vars[i],
LinearExpr(end).AddConstant(-due_dates[i]));
}
}
// Decision heuristic. Note that we don't instantiate all the variables. As a
// consequence, in the values returned by the solution observer for the
// non-fully instantiated variable will be the variable lower bounds after
// propagation.
cp_model.AddDecisionStrategy(task_starts,
DecisionStrategyProto::CHOOSE_HIGHEST_MAX,
DecisionStrategyProto::SELECT_MAX_VALUE);
cp_model.AddNoOverlap(task_intervals);
// TODO(user): We can't set an objective upper bound with the current cp_model
// interface, so we can't use heuristic or FLAGS_upper_bound here. The best is
// probably to provide a "solution hint" instead.
//
// Set a known upper bound (or use the flag). This has a bigger impact than
// can be expected at first:
// - It avoid spending time finding not so good solution.
// - More importantly, because we lazily create the associated Boolean
// variables, we end up creating less of them, and that speed up the search
// for the optimal and the proof of optimality.
//
// Note however than for big problem, this will drastically augment the time
// to get a first feasible solution (but then the heuristic gave one to us).
cp_model.Minimize(LinearExpr::ScalProd(tardiness_vars, weights));
// Optional preprocessing: add precedences that don't change the optimal
// solution value.
//
// Proof: in any schedule, if such precedence between task A and B is not
// satisfied, then it is always better (or the same) to swap A and B. This is
// because the tasks between A and B will be completed earlier (because the
// duration of A is smaller), and the cost of the swap itself is also smaller.
int num_added_precedences = 0;
for (int i = 0; i < num_tasks; ++i) {
for (int j = 0; j < num_tasks; ++j) {
if (i == j) continue;
if (due_dates[i] <= due_dates[j] && durations[i] <= durations[j] &&
weights[i] >= weights[j]) {
// If two jobs have exactly the same specs, we don't add both
// precedences!
if (due_dates[i] == due_dates[j] && durations[i] == durations[j] &&
weights[i] == weights[j] && i > j) {
continue;
}
++num_added_precedences;
cp_model.AddLessOrEqual(task_ends[i], task_starts[j]);
}
}
}
LOG(INFO) << "Added " << num_added_precedences
<< " precedences that will not affect the optimal solution value.";
// Solve it.
//
// Note that we only fully instantiate the start/end and only look at the
// lower bound for the objective and the tardiness variables.
Model model;
model.Add(NewSatParameters(FLAGS_params));
model.Add(NewFeasibleSolutionObserver([&](const CpSolverResponse& r) {
// Note that we compute the "real" cost here and do not use the tardiness
// variables. This is because in the core based approach, the tardiness
// variable might be fixed before the end date, and we just have a >=
// relation.
int64 objective = 0;
for (int i = 0; i < num_tasks; ++i) {
const int64 end = SolutionIntegerMin(r, task_ends[i]);
CHECK_EQ(end, SolutionIntegerMax(r, task_ends[i]));
objective += weights[i] * std::max<int64>(0ll, end - due_dates[i]);
}
LOG(INFO) << "Cost " << objective;
// Print the current solution.
std::vector<int> sorted_tasks(num_tasks);
std::iota(sorted_tasks.begin(), sorted_tasks.end(), 0);
std::sort(sorted_tasks.begin(), sorted_tasks.end(), [&](int v1, int v2) {
CHECK_EQ(SolutionIntegerMin(r, task_starts[v1]),
SolutionIntegerMax(r, task_starts[v1]));
CHECK_EQ(SolutionIntegerMin(r, task_starts[v2]),
SolutionIntegerMax(r, task_starts[v2]));
return SolutionIntegerMin(r, task_starts[v1]) <
SolutionIntegerMin(r, task_starts[v2]);
});
std::string solution = "0";
int end = 0;
for (const int i : sorted_tasks) {
const int64 cost = weights[i] * SolutionIntegerMin(r, tardiness_vars[i]);
absl::StrAppend(&solution, "| #", i, " ");
if (cost > 0) {
// Display the cost in red.
absl::StrAppend(&solution, "\033[1;31m(+", cost, ") \033[0m");
}
absl::StrAppend(&solution, "|", SolutionIntegerMin(r, task_ends[i]));
CHECK_EQ(end, SolutionIntegerMin(r, task_starts[i]));
end += durations[i];
CHECK_EQ(end, SolutionIntegerMin(r, task_ends[i]));
}
LOG(INFO) << "solution: " << solution;
}));
// Solve.
const CpSolverResponse response = SolveCpModel(cp_model.Build(), &model);
LOG(INFO) << CpSolverResponseStats(response);
}
void ParseAndSolve() {
std::vector<int> numbers;
std::vector<std::string> entries;
for (const std::string& line : FileLines(FLAGS_input)) {
entries = absl::StrSplit(line, ' ', absl::SkipEmpty());
for (const std::string& entry : entries) {
numbers.push_back(0);
CHECK(absl::SimpleAtoi(entry, &numbers.back()));
}
}
const int instance_size = FLAGS_size * 3;
LOG(INFO) << numbers.size() << " numbers in '" << FLAGS_input << "'.";
LOG(INFO) << "This correspond to " << numbers.size() / instance_size
<< " instances of size " << FLAGS_size;
LOG(INFO) << "Loading instance #" << FLAGS_n;
CHECK_GE(FLAGS_n, 0);
CHECK_LE(FLAGS_n * instance_size, numbers.size());
// The order in a wt file is: duration, tardiness weights and then due_dates.
int index = (FLAGS_n - 1) * instance_size;
std::vector<int64> durations;
for (int j = 0; j < FLAGS_size; ++j) durations.push_back(numbers[index++]);
std::vector<int64> weights;
for (int j = 0; j < FLAGS_size; ++j) weights.push_back(numbers[index++]);
std::vector<int64> due_dates;
for (int j = 0; j < FLAGS_size; ++j) due_dates.push_back(numbers[index++]);
Solve(durations, due_dates, weights);
}
} // namespace sat
} // namespace operations_research
int main(int argc, char** argv) {
absl::SetFlag(&FLAGS_logtostderr, true);
gflags::ParseCommandLineFlags(&argc, &argv, true);
if (FLAGS_input.empty()) {
LOG(FATAL) << "Please supply a data file with --input=";
}
operations_research::sat::ParseAndSolve();
return EXIT_SUCCESS;
}