-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathClassExciton1.py
227 lines (211 loc) · 8.59 KB
/
ClassExciton1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import numpy as np
import math
from openpyxl import Workbook
from openpyxl import load_workbook
from openpyxl.chart import ScatterChart, Reference, Series
# import matplotlib.pyplot as plt
def st(n): # convert column number into excel ABC format
text = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" # 26 base
if n == 0:
return "A"
base = 26
t = ""
while n > 0:
n1 = n % base
t = text[n1 : n1 + 1] + t
n = int(n / base)
return t
def sts(i, j): # convert column-row
t = st(i) + str(j + 1)
return t
class Pigment:
def __init__(self):
self.coord = np.zeros((3))
self.mu = np.zeros((3))
self.mag = 0.0
"""
------------------------------------------------------------
Using class Exciton
- Constructor takes two filenames
The first is xlsx (excel) input file name, see Dimer.xlsx for structure
only 3 pages are important, General, Hamiltonian and Pigment
All numbers must be exactly in cells where they are, the program
reads them by cell number and sheet number.
The second file is output file. It can be the same as input, but that file
must not be open before starting the program. It will keep 3 first pages intact
and will append to them the results of calculation if second file is omitted,
then it will run faster and will not create output file. All elements can be
accessed by class members
- Once constructed, the class diagonalizes matrix and calculates spectra, they
can be accesses as following members of class:
filename - (Exciton.filename) input file name
wb - excel workbook with input parameters, and output as well if output file was defined
size - the size of the system (number of pigments, or hamiltonian sizexsize)
bandwidth - the bandwidth to broaden sticks with (from excel input)
if bandwidth was zero, no spectra will be calculated!
xfrom, xto, xstep - limits and step for spectra calculation range
ham - hamiltonian
pig[i] - array with pigment Pigment structures (size elements), from input file
pig.coord - vector showing the position of pigment
pig.mu - transition dipole moment vector
pig.mag - the magnitude of dipole. If it was 0 in input file, then
input mu will be as in the file, otherwise vector mu
is rescaled to have magnitude mag, but original direction
eval[i] - eigenvalues obtained by dioganalizing input ham
evec[j,i] - eigenvectors corresponding to eval[i]
mu[i] - exciton transition dipole moment vectors
stickA[i] - absorption strength of exciton band (mu[i]**2)
stickCD[i] - rotational strength of exciton band
in case xstep was not zero, spectra are calculated:
x[i] - x-axis for xpectra
abs[i] - absorption spectrum
CD[i] - CD spectrum
"""
class Exciton:
def __init__(self, filename):
self.filename = filename
self.wb = wb = load_workbook(self.filename)
sheet = wb.sheetnames
# Now delete all output worksheets above #3, i.e. keep only 3 poages!!!
for i in range(3, len(sheet)):
self.wb.remove(wb[sheet[i]])
self.size = N = wb[sheet[0]]["B10"].value
self.bandwidth = wb[sheet[0]]["B11"].value
self.xfrom = wb[sheet[0]]["B12"].value
self.xto = wb[sheet[0]]["C12"].value
self.xstep = wb[sheet[0]]["D12"].value
self.ham = np.zeros((N, N))
self.origham = np.zeros((N, N))
for i in range(0, N):
for j in range(0, N):
self.ham[i][j] = self.origham[i, j] = wb[sheet[1]][i + 1][j].value
# self.origham = self.ham;
self.pig = np.ndarray((N), Pigment)
self.origpig = np.ndarray((N), Pigment)
for i in range(0, N):
self.pig[i] = Pigment()
self.pig[i].mag = wb[sheet[2]][sts(1, i + 2)].value
for j in range(0, 3):
self.pig[i].mu[j] = wb[sheet[2]][sts(j + 2, i + 2)].value
self.pig[i].coord[j] = wb[sheet[2]][sts(j + 5, i + 2)].value
# normalize mu to mag
if self.pig[i].mag != 0:
for i in range(0, N):
magn = np.dot(self.pig[i].mu, self.pig[i].mu)
self.pig[i].mu = self.pig[i].mu * (self.pig[i].mag / magn)
self.origpig = self.pig
# diagonalize Hamiltonian
# self.eval, self.evec = np.linalg.eig(self.ham)
if self.xstep != 0:
self.x = np.arange(self.xfrom, self.xto, self.xstep)
self.abs = self.x * 0.0
self.CD = self.x * 0.0
# self.recalculate()
# write to workbook: only if output book name is defined!
return
def diagonalize(self):
self.eval, self.evec = np.linalg.eigh(self.ham)
return
def getsticks(self):
N = self.size
self.mu = np.zeros((N, 3))
self.stickA = np.zeros((N))
self.stickCD = np.zeros((N))
for i in range(0, N):
for j in range(0, N):
self.mu[i] += self.evec[j, i] * self.pig[j].mu
self.stickA[i] = np.dot(self.mu[i], self.mu[i])
# CD stick spectrum
for i in range(0, N):
for j in range(0, N):
for k in range(0, N):
dist = self.pig[k].coord - self.pig[j].coord
mu_cross = np.cross(self.pig[j].mu, self.pig[k].mu)
self.stickCD[i] += (
self.evec[j, i] * self.evec[k, i] * np.dot(dist, mu_cross)
)
return
def getspectra(self):
if self.xstep == 0:
return
N = self.size
if self.xstep != 0:
sigma2 = self.bandwidth ** 2 / (4.0 * math.log(2.0))
for i in range(0, N):
self.abs += self.stickA[i] * np.exp(
-(self.x - self.eval[i]) ** 2 / sigma2
)
self.CD += self.stickCD[i] * np.exp(
-(self.x - self.eval[i]) ** 2 / sigma2
)
return
def recalculate(self):
self.diagonalize()
self.getsticks()
self.getspectra()
return
def save_excel(self, filename):
sheet = self.wb.sheetnames
# Now delete all output worksheets above #3, i.e. keep only 3 poages!!!
for i in range(3, len(sheet)):
self.wb.remove(wb[sheet[i]])
N = self.size
ws_eig = self.wb.create_sheet()
ws_eig.title = "Sticks"
ws_eig[sts(0, 0)].value = "Eval"
ws_eig[sts(1, 0)].value = "Abs"
ws_eig[sts(2, 0)].value = "Rot"
ws_eig[sts(3, 0)].value = "Evector"
for i in range(0, N):
ws_eig[sts(0, i + 1)].value = self.eval[i]
ws_eig[sts(1, i + 1)].value = self.stickA[i]
ws_eig[sts(2, i + 1)].value = self.stickCD[i]
for j in range(0, N):
ws_eig[sts(3 + j, i + 1)].value = self.evec[j, i]
ws_spec = self.wb.create_sheet()
ws_spec.title = "Spectra"
for i in range(0, np.size(self.x)):
ws_spec[sts(0, i)].value = self.x[i]
ws_spec[sts(1, i)].value = self.abs[i]
ws_spec[sts(2, i)].value = self.CD[i]
# add chart
c1 = ScatterChart()
c1.title = ""
c1.x_axis.title = "wavenumber"
c1.y_axis.title = "Absorbance"
c1.style = 13
xvalues = Reference(ws_spec, min_col=1, min_row=1, max_row=len(self.x))
values = Reference(
ws_spec, min_col=2, max_col=2, min_row=1, max_row=len(self.x)
)
series = Series(values, xvalues)
series.graphicalProperties.line.solidFill = "FF0000"
series.graphicalProperties.line.width = 3
c1.series.append(series)
c1.x_axis.scaling.min = self.x[0]
c1.x_axis.scaling.max = self.x[len(self.x) - 1]
c1.x_axis.tickLblPos = "low"
c1.y_axis.tickLblPos = "low"
c1.legend = None
ws_spec.add_chart(c1, "D2")
c2 = ScatterChart()
c2.title = ""
c2.x_axis.title = "wavenumber"
c2.y_axis.title = "CD"
c2.style = 13
# xvalues = Reference(ws_spec, min_col=1, min_row=1, max_row=len(self.x))
values = Reference(
ws_spec, min_col=3, max_col=3, min_row=1, max_row=len(self.x)
)
series = Series(values, xvalues)
series.graphicalProperties.line.solidFill = "0000FF"
series.graphicalProperties.line.width = 3
c2.series.append(series)
c2.x_axis.scaling.min = self.x[0]
c2.x_axis.scaling.max = self.x[len(self.x) - 1]
c2.x_axis.tickLblPos = "low"
c2.y_axis.tickLblPos = "low"
c2.legend = None
ws_spec.add_chart(c2, "D17")
self.wb.save(filename)
return