CSCI-1680
Sockets and network programming

Nick DeMarinis

Based partly on lecture notes by Rodrigo Fonseca, David Maziéres, Phil Levis, John Jannotti

Administrivia

» Container setup: fill out form by TONIGHT

— Whether or not you have it working

Snowcast is out!
* Gearup Today 9/14 5-7pm CIT368 (+Zoom, recorded)

— Look at the notes!

* Milestone due by Tuesday, 9/19 by 11:59pm EDT

— Warmup + design doc

Topics for Today

« Working with sockets
« TCP & UDP
* Building a protocol

'DP Exdmiie
(ReCO e
(SEvpn)
AN —>j/2 A
‘ (Te
L) e ycAu-
Upp Spenre w
CREAT sz&b?’ﬂj — CBEATE CockET (perpr()
Socke -~ UCTEN OO Paer
DI SoOD \ Binpl
P TN
Citny PACKET OL_(L u
SEMpey [T AU,
—~— N~ WAIT Fon A . c,[uﬁ
T AACKET '
zeed) &
EC N
n an) '
L;L I Vv
)
LICTv, o PonT ;L
N
T~ S [7> LISTV Cocpwr”
’\ =
~— ——— Al ()
T~
. = CREATE A JV
O 2 Conm, ~ L
l. A SCCLE) ot JUS]
] Y clbnr
-2 Pl —CLUBAT
] CLoctke

Client-server example: Guessing.game ﬂ\(o
Server picks a random number & ,4> d5}
Clients connect and can guess numbers
Server responds with too high, too low, or correct (
First client to respond wins, restarts game S GULSS 27

Y=~

As the designers, we get to decide on the
format for how messages are exchanged
Here’s our format. In this version, every
message is 5 bytes:

[| womge |

) 8Y7¥ Y 8T)ZEQ
7’00 N) HJ .

é/é_ﬁf Protocol must give the grder of bytes => we’re sgying it
ﬂ__ D should be big endian (ie] network byte order

Un Ben = oS

/&Wm
TPe= |
MNMGEQ =) | Tov Nién I
O CopecT !
~) low
When we format the message as a byte arfay, we order each field as in the picture above! first the type, then the
number. For multi-byte data like integers, our protocol needs to specify the byte order (ie, the endianness) used to

send the data “over the wire”. In our protocol, we’ll use big endian, or “network byte order.” If our guess were the
number Oxaabbccdd, we’d/format it like this:

TlE - VMBI

]
[::)W AR ¥ CW (ﬁ/@riﬂﬁ{y’

7 7 7 e oﬁm)

/MDEX
CIN BYE JRRAY) O /

array and sending it.

Sockets: Communication Between Machines

» Network sockets are file descriptors too

« Datagram sockets (eg. UDP): unreliable message
delivery
— Send atomic messages, which may be reordered or lost

* Stream sockets (TCP): bi-directional pipes
— Stream of bytes written on one end, read on another
— Reads may not return full amount requested, must re-read

System calls for using TCP

Client Server
socket — make socket
bind — assign address, port
listen — listen for clients
socket — make socket
bind* — assign address
connect — connect to listening socket
accept — accept connection

e This call to bind is optional, connect can choose address & port.

Socket Naming

* TCP & UDP name communication endpoints
— |IP address specifies host (128.148.32.110)
— 16-bit port number demultiplexes within host
— Well-known services listen on standard ports (e.g. ssh — 22, http
— 80, mail = 25)
— Clients connect from arbitrary ports to well known ports

* A connection is named by 5 components
— Protocol, local IP, local port, remote IP, remote port

Dealing with Data

« Many messages are binary data sent with precise formats

« Data usually sent in Network byte order (Big Endian)
— Remember to always convert!
— In C, this is htons(), htonl(), ntohs(), ntohl()

