
CSCI-1680
Sockets and network programming

Nick DeMarinis

Based partly on lecture notes by Rodrigo Fonseca, David Mazières, Phil Levis, John Jannotti

Administrivia

• Container setup: fill out form by TONIGHT
– Whether or not you have it working

Snowcast is out!
• Gearup Today 9/14 5-7pm CIT368 (+Zoom, recorded)

– Look at the notes!

• Milestone due by Tuesday, 9/19 by 11:59pm EDT
– Warmup + design doc

Topics for Today

• Working with sockets
• TCP & UDP
• Building a protocol

UDP EXAMPLE

SENDER
RECEIVER

A B
LISTEN SYSET

CREATESIPE.fi
SOcKETO

CREATE POCKETSOCKET
LISTENONPORT

DIP 5000 YETISEND PACKET

WANTSEND's wait for A pIFets
PACKET

ONPORTReedIl y

LfLISTENSOCKET

poem
CREATE ANEW
SOCKET FOR JUST
THIS CLIENT

PER CLIENT
Socket

cut sent

It

Iai eat
TooHIGH

GUESS
TYPE O
NUMBER GUESS

REPONSEYPE
1

NUMBER
IgpÉÉÉ

TFMSBAYMBÉCDLB BIG ENDIAN
NETWORK

INDEX BYTEORDEN
INBYTEARRAY O I 2 3 Y

OttDDappy
LITTLE ENDIAN

Protocol must give the order of bytes => we’re saying it
should be big endian (ie, network byte order

Client-server example: Guessing game

Server picks a random number

Clients connect and can guess numbers

Server responds with too high, too low, or correct

First client to respond wins, restarts game

As the designers, we get to decide on the
format for how messages are exchanged

Here’s our format. In this version, every
message is 5 bytes:

When we format the message as a byte array, we order each field as in the picture above: first the type, then the
number. For multi-byte data like integers, our protocol needs to specify the byte order (ie, the endianness) used to
send the data “over the wire”. In our protocol, we’ll use big endian, or “network byte order.” If our guess were the
number 0xaabbccdd, we’d format it like this:

In Go, we specify the byte order when marshaling the struct. In C, you would need to convert
the fields of your struct using helpers like ntohs(), htons(), etc, before casting your struct to a byte
array and sending it.

Sockets: Communication Between Machines

• Network sockets are file descriptors too
• Datagram sockets (eg. UDP): unreliable message

delivery
– Send atomic messages, which may be reordered or lost

• Stream sockets (TCP): bi-directional pipes
– Stream of bytes written on one end, read on another
– Reads may not return full amount requested, must re-read

System calls for using TCP

Client Server
 socket – make socket
 bind – assign address, port
 listen – listen for clients
socket – make socket
bind* – assign address
connect – connect to listening socket
 accept – accept connection

• This call to bind is optional, connect can choose address & port.

Socket Naming

• TCP & UDP name communication endpoints
– IP address specifies host (128.148.32.110)
– 16-bit port number demultiplexes within host
– Well-known services listen on standard ports (e.g. ssh – 22, http

– 80, mail – 25)
– Clients connect from arbitrary ports to well known ports

• A connection is named by 5 components
– Protocol, local IP, local port, remote IP, remote port

Dealing with Data

• Many messages are binary data sent with precise formats

• Data usually sent in Network byte order (Big Endian)
– Remember to always convert!
– In C, this is htons(), htonl(), ntohs(), ntohl()

