forked from UKPLab/emnlp2017-bilstm-cnn-crf
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathTrain_MultiTask.py
73 lines (49 loc) · 1.84 KB
/
Train_MultiTask.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
from __future__ import print_function
import os
import logging
import sys
from neuralnets.MultiTaskLSTM import MultiTaskLSTM
from util.preprocessing import perpareDataset, loadDatasetPickle
# :: Change into the working dir of the script ::
abspath = os.path.abspath(__file__)
dname = os.path.dirname(abspath)
os.chdir(dname)
# :: Logging level ::
loggingLevel = logging.INFO
logger = logging.getLogger()
logger.setLevel(loggingLevel)
ch = logging.StreamHandler(sys.stdout)
ch.setLevel(loggingLevel)
formatter = logging.Formatter('%(message)s')
ch.setFormatter(formatter)
logger.addHandler(ch)
######################################################
#
# Data preprocessing
#
######################################################
posName = 'unidep_pos'
posColumns = {1:'tokens', 3:'POS'}
chunkingName = 'conll2000_chunking'
chunkingColumns = {0:'tokens', 1:'POS', 2:'chunk_BIO'}
datasetFiles = [
(posName, posColumns),
(chunkingName, chunkingColumns)
]
embeddingsPath = 'levy_deps.words' #Word embeddings by Levy et al: https://levyomer.wordpress.com/2014/04/25/dependency-based-word-embeddings/
# :: Prepares the dataset to be used with the LSTM-network. Creates and stores cPickle files in the pkl/ folder ::
pickleFile = perpareDataset(embeddingsPath, datasetFiles)
######################################################
#
# The training of the network starts here
#
######################################################
#Load the embeddings and the dataset
embeddings, word2Idx, datasets = loadDatasetPickle(pickleFile)
datasetTuples = {
'POS': (datasets[posName], 'POS', True),
'Chunking': (datasets[chunkingName], 'chunk_BIO', True)
}
params = {'classifier': ['CRF'], 'LSTM-Size': [100], 'dropout': (0.25, 0.25), 'charEmbeddings': False}
model = MultiTaskLSTM(embeddings, datasetTuples, params=params)
model.evaluate(25)