-
Notifications
You must be signed in to change notification settings - Fork 115
/
Copy pathsgd_classifier_test.py
56 lines (44 loc) · 1.73 KB
/
sgd_classifier_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
# Copyright 2023 Ant Group Co., Ltd.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import unittest
import jax.numpy as jnp
# TODO: unify this.
import examples.python.utils.dataset_utils as dsutil
import spu.libspu as libspu
import spu.utils.simulation as spsim
from sml.linear_model.sgd_classifier import SGDClassifier
class UnitTests(unittest.TestCase):
def test_sgd(self):
sim = spsim.Simulator.simple(3, libspu.ProtocolKind.ABY3, libspu.FieldType.FM64)
def proc(x1, x2, y):
model = SGDClassifier(
epochs=1,
learning_rate=0.1,
batch_size=1024,
reg_type='logistic',
penalty='None',
l2_norm=0.0,
)
x = jnp.concatenate((x1, x2), axis=1)
y = y.reshape((y.shape[0], 1))
return model.fit(x, y).predict_proba(x)
DATASET_CONFIG_FILE = "examples/python/conf/ds_mock_regression_basic.json"
with open(DATASET_CONFIG_FILE, "r") as f:
dataset_config = json.load(f)
x1, x2, y = dsutil.load_dataset_by_config(dataset_config)
result = spsim.sim_jax(sim, proc)(x1, x2, y)
print(result)
if __name__ == "__main__":
unittest.main()