-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcomplexlite.js
114 lines (98 loc) · 3.14 KB
/
complexlite.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
// ------------------------------------------------------------------------
// A basic complex number library which implements the methods used for
// Mandelbrot and Julia Set generation.
//
// Author: semudev2
// Copyright: Algol Variables © 2021
// License: GPLv3
//
// This file is part of Fractal Generator.
//
// Fractal Generator is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License
// as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
//
// Fractal Generator is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty
// of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License along with Fractal Generator. If not, see <https://www.gnu.org/licenses/>.
// ------------------------------------------------------------------------
'use strict';
// Instantiate complex number object.
function Complex(re, im) {
this.re = re; // real
this.im = im; // imaginary
}
Complex.prototype = {
're': 0,
'im': 0,
// Set value.
'set': function (re, im) {
this.re = re;
this.im = im;
},
// Get magnitude.
'abs': function () {
return Math.sqrt(this.abs2());
},
// Get magnitude squared.
'abs2': function () {
return this.re * this.re + this.im * this.im;
},
// Get polar representation (r, θ); angle in radians.
'polar': function () {
return { r: this.abs(), θ: Math.atan2(this.im, this.re) };
},
// Get square.
'sqr': function () {
var re2 = this.re * this.re - this.im * this.im;
var im2 = 2 * this.im * this.re;
return new Complex(re2, im2);
},
// Get complex number to the real power n.
'pow': function (n) {
if (n === 0) { return new Complex(1, 0); }
if (n === 1) { return this; }
if (n === 2) { return this.sqr(); }
var pol = this.polar();
return cart(Math.pow(pol.r, n), n * pol.θ);
},
// Get conjugate.
'conjugate': function () {
return new Complex(this.re, -this.im);
},
// Get quadratic zⁿ + c.
'quad': function (n, c) {
var zn = this.pow(n);
return new Complex(zn.re + c.re, zn.im + c.im);
},
// Rotate by angle in radians.
'rotate': function (angle) {
var pol = this.polar();
angle += pol.θ;
return new Complex(pol.r * Math.cos(angle), pol.r * Math.sin(angle));
},
// String in exponent format to specified significant figures.
'toString': function (sig = 9) {
return this.re.toExponential(sig) + " + " + this.im.toExponential(sig) + "i";
},
}
// Convert polar (r, θ) to cartesian representation (re, im).
function cart(r, θ) {
var re = r * Math.cos(θ);
var im = r * Math.sin(θ);
return new Complex(re, im);
}
// Optimised pow() function for integer exponent n
// using 'halving and squaring'. Significantly Faster
// than Math.pow() for integer exponents.
function powi(base, n) {
var res = 1;
while (n) {
if (n & 1) { // if n is odd
res *= base;
}
n >>= 1; // n/2
base *= base;
}
return res;
}