-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTesting_Kendall.py
35 lines (28 loc) · 1.06 KB
/
Testing_Kendall.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import numpy as np
import watlevpy.time_series as wal #base class for time series
from scipy import stats #for stats testing
#--------------Kendall testing
kdata=wal.TSReader.from_csvfile(csvfile="./data_files/KendalldataNotrend.csv",headers=True,dateformat="%m/%d/%Y %H:%M");
#kdata=wal.TSReader.from_csvfile(csvfile="./data_files/KendalldataTrend.csv",headers=True,dateformat="%m/%d/%Y %H:%M");
#kdata=wal.TSReader.from_csvfile(csvfile="./data_files/myyeardata.csv",headers=True,dateformat="%Y-%m-%d");
t=list(range(kdata.n));
tau, kp_val= stats.kendalltau(t, kdata.wl);
try:
n=kdata.n;
s=0;
for i in range(0,n-1):
for j in range(i+1,n):
s=s+np.sign(kdata.wl[j]-kdata.wl[i]);
tp=[0]*20;
for val in kdata.wl:
tp[int(val)]=tp[int(val)]+1;
kvar=n*(n-1)*(2*n+5);
for t in tp:
kvar=kvar-t*(t-1)*(2*t+5);
kvar=kvar/18;
#Z= (s-1)/np.sqrt(kvar) if s>0 else (s+1)/np.sqrt(kvar);
Z=s/np.sqrt(kvar);
mykp_val=2*(1-stats.norm.cdf(Z));
except:
pass;
#--------------------