-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain_siamese_model.py
140 lines (126 loc) · 3.97 KB
/
train_siamese_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import argparse
import logging
import torch
from torch.utils.data import DataLoader
from transformers import ElectraTokenizerFast
from pytorch_finetuning import pytorch_finetuning, siamese_electra
logging.basicConfig(
format="%(asctime)s %(levelname)s:%(message)s",
level=logging.DEBUG,
datefmt="%I:%M:%S",
)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"train_tsv", type=str, help="Path to TSV file with training data"
)
parser.add_argument(
"dev_tsv", type=str, help="Path to TSV file with development data"
)
parser.add_argument(
"save_path", type=str, help="Path to folder to save checkpoints"
)
parser.add_argument(
"--doc_max_len",
default=128,
help="Max number of tokens to use (do not use more than 512 tokens",
)
parser.add_argument(
"--teacher",
default="",
help="Path to optional teacher (doc-query model) to use",
)
parser.add_argument("--batch_size", default=32, help="Batch size")
parser.add_argument(
"--grad_acc_steps", default=8, help="Gradient accumulation steps"
)
parser.add_argument(
"--gpu_num", default="0", help="GPU ID, Use -1 to run on CPU"
)
parser.add_argument(
"--random_seed", default=0, help="Random seed"
)
parser.add_argument(
"--num_epochs", default=20, help="Number of training epochs"
)
args = parser.parse_args()
tokenizer = ElectraTokenizerFast.from_pretrained("Seznam/small-e-czech")
if torch.cuda.is_available() and args.gpu_num != "-1":
device = torch.device(f"cuda:{args.gpu_num}")
else:
device = torch.device("cpu")
train_dataset_cls = (
pytorch_finetuning.SiameseRelevanceDatasetDistillation
if args.teacher
else pytorch_finetuning.SiameseRelevanceDataset
)
train_dataset = train_dataset_cls(
args.train_tsv,
max_len=args.doc_max_len,
tokenizer=tokenizer,
nrows=None,
)
dev_dataset = pytorch_finetuning.SiameseRelevanceDataset(
args.dev_tsv,
max_len=args.doc_max_len,
tokenizer=tokenizer,
nrows=None,
)
train_loader = DataLoader(
train_dataset,
batch_size=args.batch_size,
num_workers=5,
pin_memory=False,
shuffle=True,
)
dev_loader = DataLoader(
dev_dataset,
batch_size=args.batch_size,
num_workers=5,
pin_memory=False
)
metrics = {
"p_at_10":
lambda model, predictions: pytorch_finetuning.get_p_at_10_precision(
None,
None,
predictions.squeeze(-1),
dev_dataset.get_column("label"),
dev_dataset.get_column("query"),
)
}
model_name = f"siamese_electra_best{args.random_seed}"
# MAIN
# Load pre-trained model, fine-tune on TRAIN_TSV data and save
# P@10 progression can be inspected using Tensorboard
mc = siamese_electra.SiameseElectraWithResidualMaxWithAdditionalHiddenLayer
if args.teacher:
pytorch_finetuning.train(
args.teacher,
train_loader,
dev_loader,
num_epochs=args.num_epochs,
device=device,
model_class=mc,
saving_path=args.save_path,
student_starting_pytorch_dump=args.teacher,
finetuning_model_name=model_name,
metrics=metrics,
random_seed=args.random_seed,
grad_acc_steps=args.grad_acc_steps,
attn_loss_distil=False,
)
else:
pytorch_finetuning.train(
"Seznam/small-e-czech",
train_loader,
dev_loader,
num_epochs=args.num_epochs,
device=device,
model_class=mc,
saving_path=args.save_path,
finetuning_model_name=model_name,
metrics=metrics,
random_seed=args.random_seed,
grad_acc_steps=8,
)