forked from BruceBinBoxing/ST-ResNet-Pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_bikenyc_stresnet.py
273 lines (226 loc) · 11.2 KB
/
train_bikenyc_stresnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
# -*- coding: utf-8 -*-
import sys
import math
sys.path.append('.')
import os
import click
import logging
from pathlib import Path
from dotenv import find_dotenv, load_dotenv
import torch.nn as nn
import torch
from torch.utils import data
from helper.make_dataset import make_dataloader
from torch.utils.data.sampler import SubsetRandomSampler
import numpy as np
import pandas as pd
import time
from datetime import datetime
from st_resnet import stresnet
from utils import weight_init, EarlyStopping, compute_errors
from crowdlive_preprocessing import prepare_df, prepare_dataset, load_gps_data, get_matrix, simple_gps_forecast, tuned_gps_forecast
#torch.autograd.set_detect_anomaly(True)
#@click.command()
#@click.argument('input_filepath', type=click.Path(exists=True))
#@click.argument('output_filepath', type=click.Path())
len_closeness = 3 # length of closeness dependent sequence
len_period = 4 # length of period dependent sequence
len_trend = 4 # length of trend dependent sequence
nb_residual_unit = 4 # number of residual units
map_height, map_width = 32, 32 # grid size ##Lanterne: I believe we would insert noCells here
nb_flow = 1 # there are two types of flows: new-flow and end-flow
nb_area = 81 # ?????? Unsure of the meaning here
m_factor = math.sqrt(1. * map_height * map_width / nb_area)
print('factor: ', m_factor)
epoch_nums = 1000
learning_rate = 0.0002
batch_size = 32
params = {'batch_size': batch_size,
'shuffle': False,
'drop_last':False,
'num_workers': 0
}
validation_split = 0.1
early_stop_patience = 30
shuffle_dataset = True
epoch_save = [0 , epoch_nums - 1] \
+ list(range(0, epoch_nums, 50)) # 1*1000
out_dir = './reports'
checkpoint_dir = out_dir+'/checkpoint'
model_name = 'stresnet'
os.makedirs(checkpoint_dir+ '/%s'%(model_name), exist_ok=True)
initial_checkpoint = './reports/checkpoint/stresnet/00000499_model.pth'
LOAD_INITIAL = True
COMPARE_TO_HA = True
random_seed = int(time.time())
def compare_to_simple_ha(criterion, val_timestamps, Y, mmn):
# df = load_gps_data("C:/Users/shadow/Downloads/predicio.csv")
df = pd.read_csv("C:/Lanterne/smallerPrepreparedPredicio01234.csv")
df.local = pd.to_datetime(df.local)
# df, _ = prepare_df(df)
X = []
for dt in val_timestamps[:10]:
predicted_df = simple_gps_forecast(dt, df)
predicted_df = prepare_df(predicted_df, for_benchmark=True, noCells=map_height)
X.append(get_matrix(predicted_df, noCells=map_height))
#criterion must return mse, mae and rmse in that order
X = np.array(X)
X = mmn.transform(X)
# return np.array(X)
return criterion(X, Y)
def compare_to_tuned_ha(criterion, val_timestamps, Y, mmn):
# df = load_gps_data("C:/Users/shadow/Downloads/predicio.csv")
df = pd.read_csv("C:/Lanterne/smallerPrepreparedPredicio01234.csv")
df.local = pd.to_datetime(df.local)
# df, _ = prepare_df(df)
X = []
for dt in val_timestamps[:10]:
predicted_df = tuned_gps_forecast(dt, df)
predicted_df = prepare_df(predicted_df, for_benchmark=True, noCells=map_height)
X.append(get_matrix(predicted_df, noCells=map_width))
#criterion must return mse, mae and rmse in that order
X = np.array(X)
X = mmn.transform(X)
# return np.array(X)
return criterion(X, Y)
def valid(model, val_generator, criterion, device):
model.eval()
mean_loss = []
for i, (X_c, X_p, X_t, X_meta, Y_batch) in enumerate(val_generator):
# Move tensors to the configured device
X_c = X_c.type(torch.FloatTensor).to(device)
X_p = X_p.type(torch.FloatTensor).to(device)
X_t = X_t.type(torch.FloatTensor).to(device)
X_meta = X_meta.type(torch.FloatTensor).to(device)
# Forward pass
outputs = model(X_c, X_p, X_t, X_meta)#.cpu().data.numpy()
mse, _, _ = criterion(outputs.cpu().data.numpy(), Y_batch.data.numpy())
# mse, _, _ = criterion(outputs.reshape(len(outputs), map_width, map_height), Y_batch.data.numpy())
mean_loss.append(mse)
mean_loss = np.mean(mean_loss)
print('Mean valid loss:', mean_loss)
return mean_loss
def train():
""" Runs data processing scripts to turn raw data from (../raw) into
cleaned data ready to be analyzed (saved in ../processed).
"""
logger = logging.getLogger(__name__)
logger.info('training...')
# data loader
train_dataset = make_dataloader(dataset_name='bikenyc', mode='train',
len_closeness = len_closeness, len_period = len_period,
len_trend=len_trend)
# Creating data indices for training and validation splits:
dataset_size = len(train_dataset)
indices = list(range(dataset_size))
split = int(np.floor(validation_split * dataset_size))
if shuffle_dataset:
np.random.seed(random_seed)
np.random.shuffle(indices)
train_indices, val_indices = indices[split:], indices[:split]
val_timestamps = [train_dataset.timestamp_train[i] for i in indices[:split]]
val_Y = [train_dataset.Y_data[i] for i in indices[:split]]
print('training size:', len(train_indices))
print('val size:', len(val_indices))
# Creating PT data samplers and loaders:
train_sampler = SubsetRandomSampler(train_indices)
valid_sampler = SubsetRandomSampler(val_indices)
training_generator = data.DataLoader(train_dataset, **params,
sampler=train_sampler)
val_generator = data.DataLoader(train_dataset, **params,
sampler=valid_sampler)
# Total iterations
total_iters = np.ceil(len(train_indices) / batch_size) * epoch_nums
# model
model = stresnet((len_closeness, nb_flow, map_height, map_width),
(len_period, nb_flow, map_height, map_width),
(len_trend, nb_flow , map_height, map_width),
external_dim = 8, nb_residual_unit = nb_residual_unit)
if LOAD_INITIAL:
logger.info('\tload initial_checkpoint = %s\n' % initial_checkpoint)
model.load_state_dict(torch.load(initial_checkpoint, map_location=lambda storage, loc: storage))
#model.apply(weight_init)
# Loss and optimizer
loss_fn = nn.MSELoss() # nn.L1Loss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
loss_fn.to(device)
# Train the model
es = EarlyStopping(patience = early_stop_patience,
mode='min', model=model, save_path=checkpoint_dir + '/%s/model.best.pth' % (model_name))
for e in range(epoch_nums):
for i, (X_c, X_p, X_t, X_meta, Y_batch) in enumerate(training_generator):
#epoch = i * batch_size / len(train_loader)
# Move tensors to the configured device
X_c = X_c.type(torch.FloatTensor).to(device)
X_p = X_p.type(torch.FloatTensor).to(device)
X_t = X_t.type(torch.FloatTensor).to(device)
X_meta = X_meta.type(torch.FloatTensor).to(device)
#print(X_meta[0])
Y_batch = Y_batch.type(torch.FloatTensor).to(device)
# Forward pass
outputs = model(X_c, X_p, X_t, X_meta)
#print(outputs[0])
loss = loss_fn(outputs.reshape(len(outputs), map_width, map_height), Y_batch)
# Backward and optimize
optimizer.zero_grad()
loss.backward()
optimizer.step()
its = np.ceil(len(train_indices) / batch_size) * (e+1) # iterations at specific epochs
print('Epoch [{}/{}], step [{}/{}], Loss: {:.4f}'
.format(e + 1, epoch_nums, its, total_iters, loss.item()))
# valid after each training epoch
val_loss = valid(model, val_generator, compute_errors, device)
if es.step(val_loss):
print('early stopped! With val loss:', val_loss)
break # early stop criterion is met, we can stop now
if e in epoch_save:
torch.save(model.state_dict(), checkpoint_dir + '/%s/%08d_model.pth' % (model_name, e))
torch.save({
'optimizer': optimizer.state_dict(),
'iter': its,
'epoch': e,
}, checkpoint_dir + '/%s/%08d_optimizer.pth' % (model_name, e))
logger.info(checkpoint_dir + '/%s/%08d_model.pth' % (model_name, e) +
' saved!')
rmse_list=[]
mse_list=[]
mae_list=[]
for i, (X_c, X_p, X_t, X_meta, Y_batch) in enumerate(training_generator):
# Move tensors to the configured device
X_c = X_c.type(torch.FloatTensor).to(device)
X_p = X_p.type(torch.FloatTensor).to(device)
X_t = X_t.type(torch.FloatTensor).to(device)
X_meta = X_meta.type(torch.FloatTensor).to(device)
#Y_batch = Y_batch.type(torch.FloatTensor).to(device)
# Forward pass
outputs = model(X_c, X_p, X_t, X_meta)#.cpu().data.numpy()
mse, mae, rmse = compute_errors(outputs.cpu().data.numpy(), Y_batch.data.numpy()) #original version, bug has appeared where shape is x,1,32,32 ratehr than x,32,32? this did not happen 3 weeks ago...
# mse, mae, rmse = compute_errors(outputs.reshape(len(outputs),map_width, map_height), Y_batch.data.numpy())
rmse_list.append(rmse)
mse_list.append(mse)
mae_list.append(mae)
rmse = np.mean(rmse_list)
mse = np.mean(mse_list)
mae = np.mean(mae_list)
print('Training mse: %.6f mae: %.6f rmse (norm): %.6f, rmse (real): %.6f' % (
mse, mae, rmse, rmse * (train_dataset.mmn._max - train_dataset.mmn._min) / 2. * m_factor))
if COMPARE_TO_HA:
print("Preparing Benchmark Scores, this may take a few minutes.....")
# return compare_to_ha(compute_errors, val_timestamps, val_Y, train_dataset.mmn)
mse_benchmark, mae_benchmark, rmse_benchmark = compare_to_simple_ha(compute_errors, val_timestamps, val_Y, train_dataset.mmn)
print('Simple HA Benchmark mse: %.6f mae: %.6f rmse (norm): %.6f, rmse (real): %.6f' % (
mse_benchmark, mae_benchmark, rmse_benchmark, rmse_benchmark * (train_dataset.mmn._max - train_dataset.mmn._min) / 2. * m_factor))
mse_benchmark, mae_benchmark, rmse_benchmark = compare_to_tuned_ha(compute_errors, val_timestamps, val_Y, train_dataset.mmn)
print('Tuned HA Benchmark mse: %.6f mae: %.6f rmse (norm): %.6f, rmse (real): %.6f' % (
mse_benchmark, mae_benchmark, rmse_benchmark, rmse_benchmark * (train_dataset.mmn._max - train_dataset.mmn._min) / 2. * m_factor))
if __name__ == '__main__':
log_fmt = '%(asctime)s - %(name)s - %(levelname)s - %(message)s'
logging.basicConfig(level=logging.INFO, format=log_fmt)
# not used in this stub but often useful for finding various files
# project_dir = Path(__file__).resolve().parents[2]
# find .env automagically by walking up directories until it's found, then
# load up the .env entries as environment variables
load_dotenv(find_dotenv())
X = train()