-
Notifications
You must be signed in to change notification settings - Fork 14
/
scene_div.py
184 lines (141 loc) · 4.89 KB
/
scene_div.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
# -*- coding: utf-8 -*-
import cv2
import operator
import numpy as np
import matplotlib.pyplot as plt
import sys
from scipy.signal import argrelextrema
print(sys.executable)
#Setting fixed threshold criteria
USE_THRESH = False
#fixed threshold value
THRESH = 0.6
#Setting fixed threshold criteria
USE_TOP_ORDER = False
#Setting local maxima criteria
USE_LOCAL_MAXIMA = True
#Number of top sorted frames
NUM_TOP_FRAMES = 20
#Video path of the source file
videopath = sys.argv[1]
#Directory to store the processed frames
dir = sys.argv[2]
#smoothing window size
len_window = int(sys.argv[3])
def smooth(x, window_len=13, window='hanning'):
"""smooth the data using a window with requested size.
This method is based on the convolution of a scaled window with the signal.
The signal is prepared by introducing reflected copies of the signal
(with the window size) in both ends so that transient parts are minimized
in the begining and end part of the output signal.
input:
x: the input signal
window_len: the dimension of the smoothing window
window: the type of window from 'flat', 'hanning', 'hamming', 'bartlett', 'blackman'
flat window will produce a moving average smoothing.
output:
the smoothed signal
example:
import numpy as np
t = np.linspace(-2,2,0.1)
x = np.sin(t)+np.random.randn(len(t))*0.1
y = smooth(x)
see also:
numpy.hanning, numpy.hamming, numpy.bartlett, numpy.blackman, numpy.convolve
scipy.signal.lfilter
TODO: the window parameter could be the window itself if an array instead of a string
"""
print(len(x), window_len)
if x.ndim != 1:
raise ValueError("smooth only accepts 1 dimension arrays.")
if x.size < window_len:
raise ValueError("Input vector needs to be bigger than window size.")
if window_len < 3:
return x
if not window in ['flat', 'hanning', 'hamming', 'bartlett', 'blackman']:
raise ValueError("Window is on of 'flat', 'hanning', 'hamming', 'bartlett', 'blackman'")
s = np.r_[2 * x[0] - x[window_len:1:-1],
x, 2 * x[-1] - x[-1:-window_len:-1]]
#print(len(s))
if window == 'flat': # moving average
w = np.ones(window_len, 'd')
else:
w = getattr(np, window)(window_len)
y = np.convolve(w / w.sum(), s, mode='same')
return y[window_len - 1:-window_len + 1]
#Class to hold information about each frame
class Frame:
def __init__(self, id, frame, value):
self.id = id
self.frame = frame
self.value = value
def __lt__(self, other):
if self.id == other.id:
return self.id < other.id
return self.id < other.id
def __gt__(self, other):
return other.__lt__(self)
def __eq__(self, other):
return self.id == other.id and self.id == other.id
def __ne__(self, other):
return not self.__eq__(other)
def rel_change(a, b):
x = (b - a) / max(a, b)
print(x)
return x
print("Video :" + videopath)
print("Frame Directory: " + dir)
cap = cv2.VideoCapture(str(videopath))
curr_frame = None
prev_frame = None
frame_diffs = []
frames = []
ret, frame = cap.read()
i = 1
while(ret):
luv = cv2.cvtColor(frame, cv2.COLOR_BGR2LUV)
curr_frame = luv
if curr_frame is not None and prev_frame is not None:
#logic here
diff = cv2.absdiff(curr_frame, prev_frame)
count = np.sum(diff)
frame_diffs.append(count)
frame = Frame(i, frame, count)
frames.append(frame)
prev_frame = curr_frame
i = i + 1
ret, frame = cap.read()
"""
cv2.imshow('frame',luv)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
"""
cap.release()
#cv2.destroyAllWindows()
if USE_TOP_ORDER:
# sort the list in descending order
frames.sort(key=operator.attrgetter("value"), reverse=True)
for keyframe in frames[:NUM_TOP_FRAMES]:
name = "frame_" + str(keyframe.id) + ".jpg"
cv2.imwrite(dir + "/" + name, keyframe.frame)
if USE_THRESH:
print("Using Threshold")
for i in range(1, len(frames)):
if (rel_change(np.float(frames[i - 1].value), np.float(frames[i].value)) >= THRESH):
#print("prev_frame:"+str(frames[i-1].value)+" curr_frame:"+str(frames[i].value))
name = "frame_" + str(frames[i].id) + ".jpg"
cv2.imwrite(dir + "/" + name, frames[i].frame)
if USE_LOCAL_MAXIMA:
print("Using Local Maxima")
diff_array = np.array(frame_diffs)
sm_diff_array = smooth(diff_array, len_window)
frame_indexes = np.asarray(argrelextrema(sm_diff_array, np.greater))[0]
for i in frame_indexes:
name = "frame_" + str(frames[i - 1].id) + ".jpg"
print(dir+name)
print(len(frames))
cv2.imwrite(dir + name, frames[i - 1].frame)
plt.figure(figsize=(40, 20))
plt.locator_params(numticks=100)
plt.stem(sm_diff_array)
plt.savefig(dir + 'plot.png')