Skip to content

Latest commit

 

History

History
37 lines (30 loc) · 1.28 KB

README.md

File metadata and controls

37 lines (30 loc) · 1.28 KB

Fed-A-GEM

Setup

  • Use ./main.py to run experiments. Make sure you have the necessary dependencies installed.
  • Use --booster to control the usage of our algorithm.
  • Use --forgetting to enable the calculation of the forgetting metric.
  • Each experiemnt is run in 5 different random seeds.

Algorithms

  • FedAvg: --algo sgd
  • FedCurv: --algo fedcurv
  • FedProx: --algo fedprox
  • A-GEM: --algo agem
  • DER: --algo der

Datasets

  • Rotated MNIST (Domain-IL): --dataset mnist
  • Permuted MNIST (Domain-IL): --dataset mnist --mnist_permuted
  • Sequential CIFAR-10 (Class-Il / Task-IL): --dataset cifar10
  • Sequential CIFAR-100 (Class-Il / Task-IL): --dataset cifar100

Examples

  • To run FedAvg using Rotated MNIST data and our algorithm, execute the following command:
python3 main.py --algo sgd --dataset mnist --model cnn --num_channels 1 --local_ep 1 --lr 0.01 --num_classes 10 --booster
  • To run A-GEM using Sequential CIFAR-10 data and our algorithm, execute the following command:
python3 main.py --algo agem --dataset cifar10 --num_tasks 5 --num_classes 10 --booster
  • To run DER using Sequential CIFAR-100 data and our algorithm, execute the following command:
python3 main.py --algo der --dataset cifar100 --num_classes 100 --booster