-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbooster.py
269 lines (249 loc) · 12.8 KB
/
booster.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Python version: 3.6
import os
os.environ["CUBLAS_WORKSPACE_CONFIG"]=":4096:8"
import matplotlib
matplotlib.use('Agg')
import copy
from torchvision import datasets, transforms
from utils.sampling import mnist_iid, mnist_noniid, cifar100_iid, cifar100_noniid, cifar100_test_split, cifar10_noniid, cifar10_test_split
from utils.options import args_parser
from utils.rotation import Rotation
from utils.permutation import Permutation
from models.Update_booster import LocalUpdate, DatasetSplit, GradER
from models.Fed import FedAvg, FedSum
from models.test import test_img
from data.datasets import CIFAR100_truncated
from models.Nets import CNNMnist
from models.resnet import ResNet18
# from torchvision.models import resnet18, ResNet18_Weights
# from models.ResNet import resnet18_cbam
from models.myNetwork import network
#from utils.buffer import Buffer
import numpy as np
from pathlib import Path
from utils.buffer import Buffer
import torch
def training(trial, args):
# load dataset and split users
if args.dataset == 'mnist':
args.num_classes = 10
trans_mnist = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
mnist_train = datasets.MNIST('../data/mnist/', train=True, download=True, transform=trans_mnist)
mnist_test = datasets.MNIST('../data/mnist/', train=False, download=True, transform=trans_mnist)
if args.iid:
dict_users = mnist_iid(mnist_train, args.num_users) # dict_users[num_users][num_tasks]
else:
dict_users = mnist_noniid(mnist_train, args.num_users)
elif args.dataset == 'cifar100':
args.num_classes = 100
CIFAR_MEAN = [0.5071, 0.4865, 0.4409]
CIFAR_STD = [0.2673, 0.2564, 0.2762]
train_transform = transforms.Compose(
[
transforms.ToPILImage(),
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(CIFAR_MEAN, CIFAR_STD),
]
)
valid_transform = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize(CIFAR_MEAN, CIFAR_STD),
]
)
cifar100_training = CIFAR100_truncated(root='./data/cifar100/', train=True, download=True, transform=train_transform)
cifar100_test = CIFAR100_truncated(root='./data/cifar100/', train=False, download=True, transform=valid_transform)
if args.iid:
dict_users = cifar100_iid(cifar100_training, args.num_users, args.num_tasks)
else:
dict_users = cifar100_noniid(cifar100_training, args.num_users, args.num_tasks)
dict_users_test = cifar100_test_split(cifar100_test, args.num_users, args.num_tasks)
elif args.dataset == 'cifar10':
args.num_classes = 10
transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
cifar10_training = datasets.CIFAR10(root='./data/cifar10/', train=True, download=True, transform=transform)
cifar10_test = datasets.CIFAR10(root='./data/cifar10/', train=False, download=True, transform=transform)
# # sample users
dict_users = cifar10_noniid(cifar10_training, args.num_users, args.num_tasks)
dict_users_test = cifar10_test_split(cifar10_test, args.num_users, args.num_tasks)
else:
exit('Error: unrecognized dataset')
# build model
if args.model == 'resnet18' and (args.dataset == 'cifar100' or args.dataset == 'cifar10'):
net_glob = ResNet18(num_classes=args.num_classes).to(args.device)
elif args.model == 'cnn' and args.dataset == 'mnist':
net_glob = CNNMnist(args=args).to(args.device)
else:
exit('Error: unrecognized model')
net_glob.train()
w_glob = net_glob.state_dict()
buffers = [Buffer(args.buffer_size, args.device) for _ in range(args.num_users)]
loss_train, acc_tests, acc_mask_classes_tests, acc_tests_cur = [], [], [], []
grad_dims = []
for param in net_glob.parameters():
grad_dims.append(param.data.numel())
w_glob_er = None
test_list = []
if (args.fed_interval is not None):
w_list = []
net_local = copy.deepcopy(net_glob)
results = []
results_mask = []
forg_list = []
forg_mask_list = []
mnist_joint = None
if (args.dataset == 'mnist'):
test_dataset_list = []
if (args.algo == 'joint'): mnist_joint = []
for it in range(args.num_tasks * args.task_epoch): # NOTE Total communication
args.current_it = it
net_glob.train()
loss_locals = []
w_locals = []
w_er_locals = []
if(args.fed_interval is not None): is_fed = ((it % args.fed_interval)==0)
if (args.dataset == 'cifar100'):
trainset = cifar100_training
testset = cifar100_test
elif (args.dataset == 'cifar10'):
trainset = cifar10_training
testset = cifar10_test
elif (args.dataset == 'mnist'):
if (it % args.task_epoch == 0):
if (args.mnist_permuted):
trans_mnist_rot = transforms.Compose((transforms.ToTensor(), Permutation()))
else:
trans_mnist_rot = transforms.Compose((Rotation(), transforms.ToTensor()))
mnist_train = datasets.MNIST('../data/mnist/', train=True, download=True, transform=trans_mnist_rot)
mnist_test = datasets.MNIST('../data/mnist/', train=False, download=True, transform=trans_mnist_rot)
if (args.algo == 'joint'):
mnist_joint.append(trans_mnist_rot)
mnist_train = datasets.MNIST('../data/mnist/', train=True, download=False)
test_dataset_list.append(mnist_test)
trainset = mnist_train
testset = mnist_test
else:
exit('Error: unrecognized dataset')
for idx in range(args.num_users):
if (args.dataset == 'cifar100' or args.dataset == 'cifar10'):
if (args.algo == 'joint'):
idxs = set().union(*dict_users[idx][:(int(it/args.task_epoch)+1)])
else:
idxs = dict_users[idx][int(it/args.task_epoch)]
if len(idxs) == 0: continue
elif (args.dataset == 'mnist'):
idxs = dict_users[idx]
else:
exit('Error: unrecognized dataset')
if ((args.fed_interval is not None) and (it>0) and (not is_fed)):
net_local.load_state_dict(w_list[-1][idx])
local = LocalUpdate(args=args, dataset=trainset, idxs=idxs, net=copy.deepcopy(net_local).to(args.device), mnist_joint=mnist_joint)
else:
local = LocalUpdate(args=args, dataset=trainset, idxs=idxs, net=copy.deepcopy(net_glob).to(args.device), mnist_joint=mnist_joint)
w, loss = local.train(buffers[idx], w_glob_er)
w_locals.append(copy.deepcopy(w))
loss_locals.append(copy.deepcopy(loss))
# print('over_write:', local.overwrite_count)
# print('not_over_write:', local.not_overwrite_count)
# update global weights
if (args.fed_interval is not None):
w_list.append(copy.deepcopy(w_locals))
if len(w_list) > 1:
w_list.pop(0)
w_glob = FedAvg(w_locals)
net_glob.load_state_dict(w_glob)
# Fed-A-GEM
if (args.booster and ((it+1) % args.booster_interval == 0)):
if ((args.fed_interval is not None) and (((it+1) % args.fed_interval)!=0)):
pass
else:
grad_er = torch.Tensor(np.sum(grad_dims)).to(args.device)
for idx in range(args.num_users):
bs = args.minibatch_size
w_er_local = GradER(buffers[idx], grad_dims, copy.deepcopy(grad_er), bs, net=copy.deepcopy(net_glob).to(args.device))
w_er_locals.append(copy.deepcopy(w_er_local))
w_glob_er = FedSum(w_er_locals)
# print loss
loss_avg = sum(loss_locals) / len(loss_locals)
print('Round {:3d}, Average loss {:.3f}'.format(it, loss_avg))
loss_train.append(loss_avg)
# testing
if (it+1)%args.task_epoch == 0:
if (args.dataset == 'cifar100' or args.dataset == 'cifar10'):
net_glob.eval()
acc_test, acc_mask_classes_test = test_img(net_glob, DatasetSplit(testset, idxs=dict_users_test[int(it/args.task_epoch)][0], transform=None), test_loaders = test_list, args = args)
print("Class-il Testing accuracy: {:.2f}".format(np.mean(acc_test)))
print("Task-il Testing accuracy: {:.2f}".format(np.mean(acc_mask_classes_test)))
# current task acc
# acc_test_cur, acc_mask_classes_test_cur = test_img(net_glob, DatasetSplit(testset, idxs=dict_users_test[it][0], transform=None), test_loaders = None, args = args)
# print("Current Class-il Testing accuracy: {:.2f}".format(acc_test_cur))
# print("Current Task-il Testing accuracy: {:.2f}".format(acc_mask_classes_test_cur))
acc_tests.append(np.mean(acc_test).item())
acc_mask_classes_tests.append(np.mean(acc_mask_classes_test).item())
# acc_tests_cur.append(acc_test_cur.item())
if args.forgetting:
results.append(acc_test)
results_mask.append(acc_mask_classes_test)
n_tasks = len(results)
for i in range(n_tasks - 1):
results[i] += [0.0] * (n_tasks - len(results[i]))
results_mask[i] += [0.0] * (n_tasks - len(results_mask[i]))
maxx = np.max(results, axis=0)
maxx_mask = np.max(results_mask, axis=0)
li = []
li_mask = []
for task in range(n_tasks - 1):
li.append(maxx[task] - results[-1][task])
li_mask.append(maxx_mask[task] - results_mask[-1][task])
forg = np.mean(li)
forg_mask = np.mean(li_mask)
print("Class-il Forgetting Metric: {:.2f}".format(forg))
print("Task-il Forgetting Metric: {:.2f}".format(forg_mask))
forg_list.append(forg)
forg_mask_list.append(forg_mask)
elif (args.dataset == 'mnist'):
net_glob.eval()
acc_test = test_img(net_glob, testset, test_loaders = test_list, args = args)
print("Domain-il accuracy: {:.2f}".format(np.mean(acc_test)))
# acc_test_cur = test_img(net_glob, testset, test_loaders = None, args = args)
# print("Current Class-il Testing accuracy: {:.2f}".format(acc_test_cur))
acc_tests.append(np.mean(acc_test).item())
# acc_tests_cur.append(acc_test_cur.item())
if args.forgetting:
results.append(acc_test)
n_tasks = len(results)
for i in range(n_tasks - 1):
results[i] += [0.0] * (n_tasks - len(results[i]))
maxx = np.max(results, axis=0)
li = []
for task in range(n_tasks - 1):
li.append(maxx[task] - results[-1][task])
forg = np.mean(li)
print("Domain-il Forgetting Metric: {:.2f}".format(forg))
forg_list.append(forg)
else:
exit('Error: unrecognized dataset')
print('train_loss', np.mean(loss_train))
# print('average current accuracy', np.mean(acc_tests_cur))
if (args.booster):
file_name = f'./save/{args.dataset}/{args.algo}+booster/{args.num_users}/'
else:
file_name = f'./save/{args.dataset}/{args.algo}/{args.num_users}/'
Path(file_name).mkdir(parents=True, exist_ok=True)
file = open(file_name+f'acc_class_{args.lr}_{args.buffer_size}_{args.num_tasks}_{args.task_epoch}_{args.local_ep}_{args.booster_interval}', 'a')
file.write(str(acc_tests)+'\n')
file.write(str(forg_list)+'\n')
file.close()
if (args.dataset == 'cifar100' or args.dataset == 'cifar10'):
file = open(file_name+f'acc_task_{args.lr}_{args.buffer_size}_{args.num_tasks}_{args.task_epoch}_{args.local_ep}_{args.booster_interval}', 'a')
file.write(str(acc_mask_classes_tests)+'\n')
file.write(str(forg_mask_list)+'\n')
file.close()
return np.mean(acc_test), np.mean(acc_mask_classes_test)
return np.mean(acc_test)