-
Notifications
You must be signed in to change notification settings - Fork 2
/
train_concap.py
704 lines (639 loc) · 25.9 KB
/
train_concap.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
import argparse
import json
import logging
import os
import random
from io import open
import math
import sys
from time import strftime
from timeit import default_timer as timer
import numpy as np
from tqdm import tqdm, trange
import torch
from torch.utils.data import DataLoader, Dataset, RandomSampler
from torch.utils.data.distributed import DistributedSampler
from tensorboardX import SummaryWriter
from pytorch_pretrained_bert.tokenization import BertTokenizer
from pytorch_pretrained_bert.optimization import BertAdam, WarmupLinearSchedule
from devlbert.datasets import ConceptCapLoaderTrain, ConceptCapLoaderVal
from devlbert.devlbert import BertForMultiModalPreTraining, BertConfig
import torch.distributed as dist
import pdb
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger = logging.getLogger(__name__)
def main():
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--train_file",
default="data/conceptual_caption/training",
type=str,
# required=True,
help="The input train corpus.",
)
parser.add_argument(
"--validation_file",
default="data/conceptual_caption/validation",
type=str,
# required=True,
help="The input train corpus.",
)
parser.add_argument(
"--from_pretrained",
default="",
type=str,
help="Bert pre-trained model selected in the list: bert-base-uncased, "
"bert-large-uncased, bert-base-cased, bert-base-multilingual, bert-base-chinese.",
)
parser.add_argument(
"--bert_model",
default="bert-base-uncased",
type=str,
help="Bert pre-trained model selected in the list: bert-base-uncased, "
"bert-large-uncased, bert-base-cased, bert-base-multilingual, bert-base-chinese.",
)
parser.add_argument(
"--output_dir",
default="save",
type=str,
# required=True,
help="The output directory where the model checkpoints will be written.",
)
parser.add_argument(
"--config_file",
default="config/bert_config.json",
type=str,
# required=True,
help="The config file which specified the model details.",
)
## Other parameters
parser.add_argument(
"--max_seq_length",
default=36,
type=int,
help="The maximum total input sequence length after WordPiece tokenization. \n"
"Sequences longer than this will be truncated, and sequences shorter \n"
"than this will be padded.",
)
parser.add_argument("--predict_feature", action="store_true", help="visual target.")
parser.add_argument(
"--train_batch_size",
default=512,
type=int,
help="Total batch size for training.",
)
parser.add_argument(
"--learning_rate",
default=1e-4,
type=float,
help="The initial learning rate for Adam.",
)
parser.add_argument(
"--num_train_epochs",
default=12.0,
type=float,
help="Total number of training epochs to perform.",
)
parser.add_argument(
"--start_epoch",
default=0,
type=float,
help="Total number of training epochs to perform.",
)
parser.add_argument(
"--warmup_proportion",
default=0.1,
type=float,
help="Proportion of training to perform linear learning rate warmup for. "
"E.g., 0.1 = 10%% of training.",
)
parser.add_argument(
"--img_weight", default=1, type=float, help="weight for image loss"
)
parser.add_argument(
"--no_cuda", action="store_true", help="Whether not to use CUDA when available"
)
parser.add_argument(
"--on_memory",
action="store_true",
help="Whether to load train samples into memory or use disk",
)
parser.add_argument(
"--do_lower_case",
type=bool,
default=True,
help="Whether to lower case the input text. True for uncased models, False for cased models.",
)
parser.add_argument(
"--local_rank",
type=int,
default=-1,
help="local_rank for distributed training on gpus",
)
parser.add_argument(
"--seed", type=int, default=42, help="random seed for initialization"
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumualte before performing a backward/update pass.",
)
parser.add_argument(
"--fp16",
action="store_true",
help="Whether to use 16-bit float precision instead of 32-bit",
)
parser.add_argument(
"--loss_scale",
type=float,
default=0,
help="Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
"0 (default value): dynamic loss scaling.\n"
"Positive power of 2: static loss scaling value.\n",
)
parser.add_argument(
"--num_workers",
type=int,
default=3,
help="Number of workers in the dataloader.",
)
parser.add_argument(
"--save_name",
default='',
type=str,
help="save name for training.",
)
parser.add_argument(
"--baseline", action="store_true", help="Wheter to use the baseline model (single bert)."
)
parser.add_argument(
"--freeze", default = -1, type=int,
help="till which layer of textual stream of vilbert need to fixed."
)
parser.add_argument(
"--use_chuncks", default=0, type=float, help="whether use chunck for parallel training."
)
parser.add_argument(
"--distributed", action="store_true" , help="whether use chunck for parallel training."
)
parser.add_argument(
"--without_coattention", action="store_true" , help="whether pair loss."
)
parser.add_argument(
"--continue_training",
action="store_true",
help="if we need to continue a stopped pretraining procedure, add this"
)
args = parser.parse_args()
if args.baseline:
from pytorch_pretrained_bert.modeling import BertConfig
from devlbert.basebert import BertForMultiModalPreTraining
else:
from devlbert.devlbert import BertForMultiModalPreTraining, BertConfig
print(args)
if args.save_name is not '':
timeStamp = args.save_name
else:
timeStamp = strftime("%d-%b-%y-%X-%a", gmtime())
timeStamp += "_{:0>6d}".format(random.randint(0, 10e6))
savePath = os.path.join(args.output_dir, timeStamp)
try:
if not os.path.exists(savePath):
os.makedirs(savePath)
except Exception:
pass
config = BertConfig.from_json_file(args.config_file)
if args.freeze > config.t_biattention_id[0]:
config.fixed_t_layer = config.t_biattention_id[0]
if args.without_coattention:
config.with_coattention = False
# save all the hidden parameters.
with open(os.path.join(savePath, 'command.txt'), 'w') as f:
print(args, file=f) # Python 3.x
print('\n', file=f)
print(config, file=f)
bert_weight_name = json.load(open("config/" + "bert-base-uncased_weight_name.json", "r"))
if args.local_rank == -1 or args.no_cuda:
device = torch.device(
"cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu"
)
n_gpu = torch.cuda.device_count()
else:
torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank)
n_gpu = 1
# Initializes the distributed backend which will take care of sychronizing nodes/GPUs
torch.distributed.init_process_group(backend="nccl")
logger.info(
"device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".format(
device, n_gpu, bool(args.local_rank != -1), args.fp16
)
)
if args.gradient_accumulation_steps < 1:
raise ValueError(
"Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format(
args.gradient_accumulation_steps
)
)
args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
tokenizer = BertTokenizer.from_pretrained(
args.bert_model, do_lower_case=args.do_lower_case
)
train_dataset = ConceptCapLoaderTrain(
args.train_file,
tokenizer,
seq_len=args.max_seq_length,
batch_size=args.train_batch_size,
predict_feature=args.predict_feature,
num_workers=args.num_workers,
distributed=args.distributed,
)
# validation_dataset = ConceptCapLoaderVal(
# args.validation_file,
# tokenizer,
# seq_len=args.max_seq_length,
# batch_size=args.train_batch_size,
# predict_feature=args.predict_feature,
# num_workers=2,
# distributed=args.distributed,
# )
if args.continue_training:
assert args.start_epoch > 0 # must have pretrained at least one epoch
num_train_optimization_steps = (
int(
train_dataset.num_dataset
/ args.train_batch_size
/ args.gradient_accumulation_steps
)
* args.num_train_epochs
)
else:
num_train_optimization_steps = (
int(
train_dataset.num_dataset
/ args.train_batch_size
/ args.gradient_accumulation_steps
)
* (args.num_train_epochs - args.start_epoch)
)
# if args.local_rank != -1:
# num_train_optimization_steps = (
# num_train_optimization_steps // torch.distributed.get_world_size()
# )
# viz = TBlogger("logs", timeStamp)
default_gpu = False
if dist.is_available() and args.distributed:
rank = dist.get_rank()
if rank == 0:
default_gpu = True
else:
default_gpu = True
# pdb.set_trace()
if args.predict_feature:
config.v_target_size = 2048
config.predict_feature = True
else:
config.v_target_size = 1601
config.predict_feature = False
if args.from_pretrained:
if args.continue_training:
ckpt_load_path = os.path.join(args.from_pretrained, "pytorch_model_{}.bin".format(int(args.start_epoch) - 1))
model = BertForMultiModalPreTraining.from_pretrained(ckpt_load_path, config)
else:
model = BertForMultiModalPreTraining.from_pretrained(args.from_pretrained, config)
else:
model = BertForMultiModalPreTraining(config)
model.cuda()
if args.fp16:
model.half()
if args.local_rank != -1:
try:
from apex.parallel import DistributedDataParallel as DDP
except ImportError:
raise ImportError(
"Please install apex from https://github.com/nvidia/apex to use distributed and fp16 training."
)
model = DDP(model)
elif n_gpu > 1:
model = torch.nn.DataParallel(model)
no_decay = ["bias", "LayerNorm.bias", "LayerNorm.weight"]
if args.freeze != -1:
bert_weight_name_filtered = []
for name in bert_weight_name:
if 'embeddings' in name:
bert_weight_name_filtered.append(name)
elif 'encoder' in name:
layer_num = name.split('.')[2]
if int(layer_num) <= args.freeze:
bert_weight_name_filtered.append(name)
optimizer_grouped_parameters = []
for key, value in dict(model.named_parameters()).items():
if key[12:] in bert_weight_name_filtered:
value.requires_grad = False
if default_gpu:
print("filtered weight")
print(bert_weight_name_filtered)
if not args.from_pretrained:
param_optimizer = list(model.named_parameters())
optimizer_grouped_parameters = [
{
"params": [
p for n, p in param_optimizer if not any(nd in n for nd in no_decay)
],
"weight_decay": 0.01,
},
{
"params": [
p for n, p in param_optimizer if any(nd in n for nd in no_decay)
],
"weight_decay": 0.0,
},
]
else:
optimizer_grouped_parameters = []
for key, value in dict(model.named_parameters()).items():
if value.requires_grad:
if key[12:] in bert_weight_name:
lr = args.learning_rate * 0.1
else:
lr = args.learning_rate
if any(nd in key for nd in no_decay):
optimizer_grouped_parameters += [
{"params": [value], "lr": lr, "weight_decay": 0.01}
]
if not any(nd in key for nd in no_decay):
optimizer_grouped_parameters += [
{"params": [value], "lr": lr, "weight_decay": 0.0}
]
if default_gpu:
print(len(list(model.named_parameters())), len(optimizer_grouped_parameters))
# set different parameters for vision branch and lanugage branch.
if args.fp16:
try:
from apex.contrib.optimizers import FP16_Optimizer
from apex.contrib.optimizers import FusedAdam
except ImportError:
raise ImportError(
"Please install apex from https://github.com/nvidia/apex to use distributed and fp16 training."
)
optimizer = FusedAdam(
optimizer_grouped_parameters,
lr=args.learning_rate,
bias_correction=False,
max_grad_norm=1.0,
)
if args.loss_scale == 0:
optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
else:
optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale)
else:
if args.from_pretrained:
optimizer = BertAdam(
optimizer_grouped_parameters,
warmup=args.warmup_proportion,
t_total=num_train_optimization_steps,
)
else:
optimizer = BertAdam(
optimizer_grouped_parameters,
lr=args.learning_rate,
warmup=args.warmup_proportion,
t_total=num_train_optimization_steps,
)
if args.continue_training:
opt_state_dict_path = os.path.join(
args.from_pretrained, "optimizer_state_{}.bin".format(int(args.start_epoch) - 1)
)
optimizer.load_state_dict(torch.load(opt_state_dict_path, map_location='cpu'))
logger.info("***** Running training *****")
logger.info(" Num examples = %d", train_dataset.num_dataset)
logger.info(" Batch size = %d", args.train_batch_size)
logger.info(" Num steps = %d", num_train_optimization_steps)
global_step = 0
# random.seed(torch.distributed.get_rank() * 2000)
for epochId in range(int(args.start_epoch), int(args.num_train_epochs)):
masked_loss_v_tmp, masked_loss_t_tmp, next_sentence_loss_tmp, loss_tmp, \
causal_prediction_loss_v_tmp, causal_prediction_loss_t_tmp, \
causal_prediction_t2v_loss_tmp, causal_prediction_v2t_loss_tmp = 0, 0, 0, 0, 0, 0, 0, 0
start_t = timer()
for step, batch in enumerate(train_dataset, 1):
batch = tuple(t.cuda(device=device, non_blocking=True) for t in batch)
input_ids, input_mask, segment_ids, lm_label_ids, is_next, image_feat, image_loc, image_target, image_label, image_mask,\
image_ids, causal_label_t, causal_label_v = (
batch
)
masked_loss_t, masked_loss_v, next_sentence_loss, \
causal_prediction_v_loss, causal_prediction_t_loss, \
causal_prediction_v2t_loss, causal_prediction_t2v_loss= model(
input_ids,
image_feat,
image_loc,
segment_ids,
input_mask,
image_mask,
lm_label_ids,
image_label,
image_target,
is_next,
causal_label_t,
causal_label_v
)
# if causal_prediction_t_loss is None:
# causal_prediction_t_loss = 0 * sum(p.sum() for p in model.parameters())
# if args.without_coattention:
# next_sentence_loss = next_sentence_loss * 0
# next_sentence_loss = next_sentence_loss * 20
masked_loss_v = masked_loss_v * args.img_weight
loss = masked_loss_t + masked_loss_v + next_sentence_loss + \
causal_prediction_v_loss + causal_prediction_t_loss + \
causal_prediction_v2t_loss + causal_prediction_t2v_loss
# if n_gpu > 1:
# loss = loss.mean() # mean() to average on multi-gpu.
# masked_loss_t = masked_loss_t.mean()
# masked_loss_v = masked_loss_v.mean()
# next_sentence_loss = next_sentence_loss.mean()
# causal_prediction_v_loss = causal_prediction_v_loss.mean()
# causal_prediction_t_loss = causal_prediction_t_loss.mean()
# causal_prediction_v2t_loss = causal_prediction_v2t_loss.mean()
# causal_prediction_t2v_loss = causal_prediction_t2v_loss.mean()
# if args.gradient_accumulation_steps > 1:
# loss = loss / args.gradient_accumulation_steps
if args.fp16:
optimizer.backward(loss)
else:
loss.backward()
if math.isnan(loss.item()):
pdb.set_trace()
# if default_gpu:
# viz.linePlot(iterId, loss.item(), "loss", "train")
# viz.linePlot(iterId, masked_loss_t.item(), "masked_loss_t", "train")
# viz.linePlot(iterId, masked_loss_v.item(), "masked_loss_v", "train")
# viz.linePlot(iterId, next_sentence_loss.item(), "next_sentence_loss", "train")
# viz.linePlot(iterId, masked_loss_v.item(), "causal_loss", "train")
# # viz.linePlot(iterId, optimizer.get_lr()[0], 'learning_rate', 'train')
loss_tmp += loss.item()
masked_loss_v_tmp += masked_loss_v.item()
masked_loss_t_tmp += masked_loss_t.item()
next_sentence_loss_tmp += next_sentence_loss.item()
causal_prediction_loss_v_tmp += causal_prediction_v_loss.item()
causal_prediction_loss_t_tmp += causal_prediction_t_loss.item()
causal_prediction_v2t_loss_tmp += causal_prediction_v2t_loss.item()
causal_prediction_t2v_loss_tmp += causal_prediction_t2v_loss.item()
if step % args.gradient_accumulation_steps == 0:
if args.fp16:
# modify learning rate with special warm up BERT uses
# if args.fp16 is False, BertAdam is used that handles this automatically
lr_this_step = args.learning_rate * warmup_linear(
global_step / num_train_optimization_steps,
args.warmup_proportion,
)
for param_group in optimizer.param_groups:
param_group["lr"] = lr_this_step
optimizer.step()
optimizer.zero_grad()
global_step += 1
if step % 20 == 0:
masked_loss_t_tmp = masked_loss_t_tmp / 20.0
masked_loss_v_tmp = masked_loss_v_tmp / 20.0
next_sentence_loss_tmp = next_sentence_loss_tmp / 20.0
loss_tmp = loss_tmp / 20.0
causal_prediction_loss_v_tmp = causal_prediction_loss_v_tmp / 20.0
causal_prediction_loss_t_tmp = causal_prediction_loss_t_tmp / 20.0
causal_prediction_v2t_loss_tmp = causal_prediction_v2t_loss_tmp / 20.0
causal_prediction_t2v_loss_tmp = causal_prediction_t2v_loss_tmp / 20.0
end_t = timer()
timeStamp = strftime("%d %b %X")
Ep = epochId + step / float(len(train_dataset))
# printFormat = "[%s][Ep: %.2f][Time: %5.2fs][Loss: %.5g][Loss_v: %.5g][Loss_t: %.5g][Loss_n: %.5g][Loss_cv: %.5g][Loss_ct: %.5g][LR: %.8g]"
printFormat = "[%s][Ep: %.2f][Time: %5.2fs][Loss: %.5g][Loss_v: %.5g][Loss_t: %.5g][Loss_n: %.5g][Loss_cv: %.5g][Loss_ct: %.5g][Loss_cv2t: %.5g][Loss_ct2v: %.5g]"
printInfo = [
timeStamp,
Ep,
end_t - start_t,
loss_tmp,
masked_loss_v_tmp,
masked_loss_t_tmp,
next_sentence_loss_tmp,
causal_prediction_loss_v_tmp,
causal_prediction_loss_t_tmp,
causal_prediction_v2t_loss_tmp,
causal_prediction_t2v_loss_tmp
]
start_t = end_t
print(printFormat % tuple(printInfo))
masked_loss_v_tmp, masked_loss_t_tmp, next_sentence_loss_tmp, loss_tmp, \
causal_prediction_loss_v_tmp, causal_prediction_loss_t_tmp, \
causal_prediction_t2v_loss_tmp, causal_prediction_v2t_loss_tmp = 0, 0, 0, 0, 0, 0, 0, 0
# Do the evaluation
# torch.set_grad_enabled(False)
# start_t = timer()
# numBatches = len(validation_dataset)
# eval_masked_loss_t = 0
# eval_masked_loss_v = 0
# eval_next_sentence_loss = 0
# eval_total_loss = 0
# eval_causal_loss = 0
#
# model.eval()
# for step, batch in enumerate(validation_dataset, 1):
# batch = tuple(t.cuda(device=device, non_blocking=True) for t in batch)
#
# input_ids, input_mask, segment_ids, lm_label_ids, is_next, image_feat, image_loc, image_target, image_label, image_mask, image_ids = (
# batch
# )
#
# masked_loss_t, masked_loss_v, next_sentence_loss, causal_loss = model(
# input_ids,
# image_feat,
# image_loc,
# segment_ids,
# input_mask,
# image_mask,
# lm_label_ids,
# image_label,
# image_target,
# is_next,
# )
#
# masked_loss_v = masked_loss_v * args.img_weight
# loss = masked_loss_t + masked_loss_v + next_sentence_loss + causal_loss
#
# if n_gpu > 1:
# loss = loss.mean() # mean() to average on multi-gpu.
# masked_loss_t = masked_loss_t.mean()
# masked_loss_v = masked_loss_v.mean()
# next_sentence_loss = next_sentence_loss.mean()
# causal_loss = causal_loss.mean()
#
# eval_masked_loss_t += masked_loss_t.item()
# eval_masked_loss_v += masked_loss_v.item()
# eval_next_sentence_loss += next_sentence_loss.item()
# eval_total_loss += loss.item()
# eval_causal_loss += causal_loss.item()
#
# end_t = timer()
# delta_t = " Time: %5.2fs" % (end_t - start_t)
# start_t = end_t
# progressString = "\r Evaluating split '%s' [%d/%d]\t" + delta_t
# sys.stdout.write(progressString % ('val', step, numBatches))
# sys.stdout.flush()
#
# eval_masked_loss_t = eval_masked_loss_t / float(numBatches)
# eval_masked_loss_v = eval_masked_loss_v / float(numBatches)
# eval_next_sentence_loss = eval_next_sentence_loss / float(numBatches)
# eval_total_loss = eval_total_loss / float(numBatches)
# eval_causal_loss = eval_causal_loss / float(numBatches)
#
# printFormat = "Evaluation: [Loss: %.5g][Loss_v: %.5g][Loss_t: %.5g][Loss_n: %.5g][Loss_c: %.5g]"
# printInfo = [
# eval_total_loss,
# eval_masked_loss_v,
# eval_masked_loss_t,
# eval_next_sentence_loss,
# eval_causal_loss,
# ]
#
# print(printFormat % tuple(printInfo))
# torch.set_grad_enabled(True)
# if default_gpu:
# viz.linePlot(epochId, eval_total_loss, "loss", "val")
# viz.linePlot(epochId, eval_masked_loss_t, "masked_loss_t", "val")
# viz.linePlot(epochId, eval_masked_loss_v, "masked_loss_v", "val")
# viz.linePlot(epochId, eval_next_sentence_loss, "next_sentence_loss", "val")
# viz.linePlot(epochId, eval_causal_loss, "causal_loss", "val")
if default_gpu:
# Save a trained model
logger.info("** ** * Saving fine - tuned model ** ** * ")
model_to_save = (
model.module if hasattr(model, "module") else model
) # Only save the model it-self
output_model_file = os.path.join(
savePath, "pytorch_model_" + str(epochId) + ".bin"
)
torch.save(model_to_save.state_dict(), output_model_file)
# output_opt_state_dict_file = os.path.join(
# savePath, "optimizer_state_" + str(epochId) + ".bin"
# )
# torch.save(optimizer.state_dict(), output_opt_state_dict_file)
class TBlogger:
def __init__(self, log_dir, exp_name):
log_dir = log_dir + "/" + exp_name
print("logging file at: " + log_dir)
self.logger = SummaryWriter(log_dir=log_dir)
def linePlot(self, step, val, split, key, xlabel="None"):
self.logger.add_scalar(split + "/" + key, val, step)
if __name__ == "__main__":
main()