-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathResNet18_train.py
239 lines (175 loc) · 7.85 KB
/
ResNet18_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
#### Shervin Minaee
#### March 2020
#### Training code for covid detection by finetuning ResNet18
from __future__ import print_function, division
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
import numpy as np
import torchvision
from torchvision import datasets, models, transforms
import matplotlib.pyplot as plt
import copy, pickle, os, time
import argparse
parser = argparse.ArgumentParser(description='COVID-19 Detection from X-ray Images')
parser.add_argument('--batch_size', type=int, default=20,
help='input batch size for training (default: 20)')
parser.add_argument('--epochs', type=int, default=100,
help='number of epochs to train (default: 100)')
parser.add_argument('--num_workers', type=int, default=0,
help='number of workers to train (default: 0)')
parser.add_argument('--learning_rate', type=float, default=0.0001,
help='learning rate (default: 0.0001)')
parser.add_argument('--momentum', type=float, default=0.9,
help='momentum (default: 0.9)')
parser.add_argument('--dataset_path', type=str, default='./data/',
help='training and validation dataset')
args = parser.parse_args()
start_time= time.time()
data_transforms = {
'train': transforms.Compose([
transforms.Resize(224),
transforms.RandomResizedCrop(224),
#transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
'val': transforms.Compose([
transforms.Resize(224),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
}
data_dir = args.dataset_path
image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x),
data_transforms[x])
for x in ['train', 'val']}
dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size= args.batch_size,
shuffle=True, num_workers= args.num_workers)
for x in ['train', 'val']}
dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'val']}
class_names = image_datasets['train'].classes ## 0: child, and 1: nonchild
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
def imshow(inp, title= None):
"""Imshow for Tensor."""
inp = inp.numpy().transpose((1, 2, 0))
mean = np.array([0.485, 0.456, 0.406])
std = np.array([0.229, 0.224, 0.225])
inp = std * inp + mean
inp = np.clip(inp, 0, 1)
plt.imshow(inp)
if title is not None:
plt.title(title)
plt.pause(0.001) # pause a bit so that plots are updated
def train_model(model, criterion, optimizer, scheduler, batch_szie, num_epochs= 20):
since = time.time()
best_model_wts = copy.deepcopy(model.state_dict())
best_acc = 0.0
train_acc= list()
valid_acc= list()
for epoch in range(num_epochs):
print('Epoch {}/{}'.format(epoch+1, num_epochs))
print('-' * 10)
# Each epoch has a training and validation phase
for phase in ['train', 'val']:
if phase == 'train':
scheduler.step()
model.train() # Set model to training mode
else:
model.eval() # Set model to evaluate mode
running_loss = 0.0
running_corrects = 0
running_prec= 0.0
running_rec = 0.0
running_f1 = 0.0
# Iterate over data.
cur_batch_ind= 0
for inputs, labels in dataloaders[phase]:
#print(cur_batch_ind,"batch inputs shape:", inputs.shape)
#print(cur_batch_ind,"batch label shape:", labels.shape)
inputs = inputs.to(device)
labels = labels.to(device)
# zero the parameter gradients
optimizer.zero_grad()
# forward
# track history if only in train
with torch.set_grad_enabled(phase == 'train'):
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)
# backward + optimize only if in training phase
if phase == 'train':
loss.backward()
optimizer.step()
# statistics
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
cur_acc= torch.sum(preds == labels.data).double()/batch_szie
cur_batch_ind +=1
print("\npreds:", preds)
print("label:", labels.data)
print("%d-th epoch, %d-th batch (size=%d), %s acc= %.3f \n" %(epoch+1, cur_batch_ind, len(labels), phase, cur_acc ))
if phase=='train':
train_acc.append(cur_acc)
else:
valid_acc.append(cur_acc)
epoch_loss= running_loss / dataset_sizes[phase]
epoch_acc = running_corrects.double() / dataset_sizes[phase]
print('{} Loss: {:.4f} Acc: {:.4f} \n\n'.format(
phase, epoch_loss, epoch_acc))
# deep copy the model
if phase == 'val' and epoch_acc > best_acc:
best_acc = epoch_acc
best_epoch= epoch
best_model_wts = copy.deepcopy(model.state_dict())
time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(
time_elapsed // 60, time_elapsed % 60))
print('Best val Acc= %.3f at Epoch: %d' %(best_acc,best_epoch) )
# load best model weights
model.load_state_dict(best_model_wts)
return model, train_acc, valid_acc
def visualize_model(model, num_images= 64):
was_training = model.training
model.eval()
images_so_far = 0
fig = plt.figure()
with torch.no_grad():
for i, (inputs, labels) in enumerate(dataloaders['val']):
inputs = inputs.to(device)
labels = labels.to(device)
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
for j in range(inputs.size()[0]):
images_so_far += 1
ax = plt.subplot(num_images/8, 8, images_so_far)
ax.axis('off')
ax.set_title('predicted: {}'.format(class_names[preds[j]]))
imshow(inputs.cpu().data[j])
if images_so_far == num_images:
model.train(mode=was_training)
return
model.train(mode=was_training)
#### load model
model_conv = torchvision.models.resnet18(pretrained=True)
for param in model_conv.parameters():
param.requires_grad = False
# Parameters of newly constructed modules have requires_grad=True by default
num_ftrs = model_conv.fc.in_features
model_conv.fc = nn.Linear(num_ftrs, 2)
model_conv = model_conv.to(device)
criterion = nn.CrossEntropyLoss()
# Observe that only parameters of final layer are being optimized as
# opoosed to before.
optimizer_conv = optim.SGD(model_conv.fc.parameters(), lr= args.learning_rate, momentum= args.momentum)
# Decay LR by a factor of 0.1 every 7 epochs
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_conv, step_size=7, gamma=0.1)
if __name__ == "__main__":
model_conv, train_acc, valid_acc = train_model(model_conv, criterion, optimizer_conv,
exp_lr_scheduler, args.batch_size, num_epochs= args.epochs)
model_conv.eval()
torch.save(model_conv, './covid_resnet18_epoch%d.pt' %args.epochs )
end_time= time.time()
print("total_time tranfer learning=", end_time - start_time)