BRAC

UNIVERSITY
Inspiring Excellence

CSEA422 : Artificial Intelligence
Project Report
Project Title : Rain or snow prediction in Hungary

Group: 13, Lab Section : 09, Summer 2023

ID Name

21301610 Shihab Muhtasim

21301648 Raiyan Wasi Siddiky

Table of Contents

Section Content Page No
No
1 Introduction 2
2 Dataset description 3
3 Correlation of all features 4
4 Imbalanced Dataset 5
5 Dataset Preprocessing 6
6 Feature scaling 12
7 Model Selection Comparison Analysis 13
8 Github Link 17
9 Models Used 17

Introduction: Weather Prediction for Rain or Snow in Hungary

Weather prediction is an extremely critical aspect of modern life, influencing various sectors
ranging from agriculture to transportation. This is especially true in the case of extreme weather
conditions such as rain or snow, which can bring commercial life to a halt. It is therefore
essential to have accurate weather forecasts, as they can help individuals and organizations make
informed decisions and plan their activities accordingly. This project, "Weather Prediction: Rain
or Snow in Hungary," aims to address the challenge of predicting whether it will rain or snow in
Hungary based on various meteorological variables.

Project Objectives:

The primary objective of this project is to develop a predictive model that can forecast whether a
specific location in Hungary will experience rain or snow within a given time frame. By utilizing
historical weather data and applying machine learning techniques, we seek to create a model that
offers reliable predictions with a high degree of accuracy. This project will contribute to
enhancing the precision of weather forecasts, providing valuable insights for individuals,
businesses, and authorities in Hungary.

Problem Statement:

Hungary, like many regions, experiences unpredictable weather conditions that can have
significant implications for day-to-day activities and planning. Traditional forecasting methods
may fall short in providing accurate predictions for rapidly changing weather patterns,
particularly in cases of rain and snow. This project addresses the challenge of improving the
accuracy of weather predictions for rain and snow, enabling residents, farmers, transportation
services, and other stakeholders to make well-informed choices based on reliable forecasts.

Motivation:

The motivation behind this project lies in the potential positive impact on individuals' lives and
societal activities. Accurate weather predictions can empower people to optimize their schedules,
mitigate risks associated with adverse weather, and even enhance agricultural practices.
Additionally, sectors such as transportation and emergency services can benefit from timely
information about rain and snowfall, ensuring public safety and efficient resource allocation. By
harnessing the power of data and machine learning, this project aims to contribute to the
well-being and productivity of Hungary's population.

Dataset description
Source: Kaggle
Link: weather prediction ,regression , neural model | Kaggle
Reference: Salma Maamouri

Dataset description

1. How many features:
There are 10 features initially. Such as: Summary , Apparent Temperature , Humidity , Wind
Speed (km/h) ,Wind Bearing (degrees), Visibility (km), Loud Cover , Pressure (millibars), Daily
Summary, Temperature (C) .
1 class: Precip type with two unique values rain, snow
After pre- processing: 35 features

2. Is this a classification or regression problem ? Why do you think so?

In this project, we are addressing a classification problem. Classification involves the task of
predicting categories or classes based on given input features. In the context of weather
prediction in Hungary, our aim is to predict whether the weather conditions will lead to the
occurrence of rain or snow. These outcomes, "rain" and "snow," are distinct categories that we
are trying to predict based on various weather-related features. Therefore, the nature of our task,
which involves predicting a categorical label (rain or snow), signifies that our project falls within
the domain of classification problems.

3. Data points: 96453

4. What kind of features are in your dataset? Quantitative or categorical?
The dataset contains a mixture of both quantitative and categorical features. Quantitative features
are those that involve numerical measurements, such as temperature, humidity, wind speed, and
pressure. These features have values that can be quantified and compared.

On the other hand, categorical features represent different categories or labels. For instance,
features like "Summary" and "Daily Summary" provide descriptions of the weather conditions in
categorical terms. Similarly, "Precip Type" is a categorical feature indicating whether it's raining
or snowing. These features help classify weather conditions into specific categories based on
their descriptions.

5. Correlation of all features:

Appatent Temperature (C)

Humidity

Wind Speed (km/h)

Wind Bearing (degrees)

Visibility (km)

Loud Cover

-

00 a0

. (millibars)

P
F

e (0)

Apparent Temperature (C) Humidity Wind Speed (kmvh) Wind Bearing (degrees)

Loud Cover

Pressure (qﬁiliﬁﬂls)

Temperature (C)

10

08

06

02

]

-0.2

0.4

-06

Number of Instances

Imbalanced Dataset
1. For the output feature, do all unique classes have an equal number of instances or not?
- No

2. Represent using a bar chart of N classes (N=number of classes you have in
your dataset).

Distribution of Precipitation Types

80000
70000
§0000
50000
40000
30000
20000

10000

Precipitation Type

Dataset Preprocessing
Faults: Null values

(2761 1 weather_data.isnull().sum()

Summary

Precip Type 51
Apparent Temperature (C)
Humidity

Wind Speed (km/h)

Wind Bearing (degrses)
Visibility (km)

Loud Cowver

Pressure (millibars)
Daily Summary
Temperature (C)

dtype: ints4

-~

s B e R R e RO s T v I T R <

Drop null values rows:
print ("Shape of dataframe before dropping:", weather data.shape)

weather data = weather data.dropna(axis = 0, subset = ['Precip
Type'l])

print ("Shape after dropping:", weather data.shape)

Drop null value column:

weather data.drop('Loud Cover', axis=1l, inplace=True)

weather data.head()

Impute values:
imputer = SimpleImputer (strategy='mean')
X = weather data.drop('Precip Type', axis=l)

X imputed = imputer.fit transform(X)

Fault: Categorical values:

© 1weather_data.info()

<class 'pandas.core.frame.DataFrame’>
Index: 95936 entriss, 2006-84-51 50:00:80.660 +0288 to 2016-89-8% 23:00:60.008 +8288
Data columns (total 11 columns):

Column Non-Null Count Dtype

@ Summary 95936 non-null object
1 Precip Type 95936 non-null object
2 Apparent Temperature (C) 95236 non-null float64
3 Humidity 95936 non-null +loated
4 Wind Speed (km/h) 95836 non-null float6d
5 Wind Bearing (degrees) 95936 non-null int64

6 Wisibility (km) 95836 non-null floated
7 Loud Cover 95936 non-null inte4

2 Pressure (millibars) 95836 non-null floated
9 Daily Summary 95936 non-null object
18 Temperature (C) 95936 non-null floated

dtypes: floatb4(6), int64(2), object(3)
memory usage: 8.8+ MB

The object types are qualitative data while the float and int type data are quantitative.

Encoding
We need to replace the categorical data with numerical data so that the computer can understand
and notice a pattern so that it can make a prediction. We do this via:

1. Binary encoding:
from sklearn.preprocessing import LabelEncoder

Setting up the LabelEncoder object
enc = LabelEncoder ()

Apply the encoding to the "Precip Type" column
weather data['Precip Type enc'] =

enc.fit transform(weather data['Precip Type'l])

9 # Compare the two columns
10 weather _datal[["Precip Type', "Precip Type_enc']]

B Precip Type Precip Type enc

Formatted Date

2006-04-01 00:00:00.000 +0200 rain (0]
2006-04-01 O1:00:00.000 +0200 rain a
2006-04-01 02:00:00.000 +0200 rain L8]
2006-04-01 03:00:00.000 +0200 rain (8]
2006-04-01 04:00:00.000 +0200 rain (4]
2016-09-09 19:00:00.000 +0200 rain Lo
2016-09-09 20:00:00.000 +0200 rain (4}
2016-09-09 21:00:00.000 +0200 rain o
2016-09-09 22:00:00.000 +0200 rain a
2016-09-09 23:00:00.000 +0200 rain (8]
95936 rows = 2 columns
2. Mapping:
weather data['Daily Summary'] = weather datal['Daily
Summary'] .map ({

'Partly cloudy throughout the day.': 1,

'Mostly cloudy throughout the day.': 2,

'Foggy in the evening.': 3,

'Foggy overnight and breezy in the morning.': 4,

'Overcast throughout the day.': 5,

'"Partly cloudy until night.': 6,

'Mostly cloudy until night.': 7,

'Foggy starting overnight continuing until morning.': 8,

'Foggy in the morning.': 9,

'Partly cloudy until evening.': 10,

'Partly cloudy starting in the morning.': 11,

12,

le,

'"Mostly cloudy starting overnight continuing until night.':

'"Partly cloudy starting in the afternoon.': 13,
'Partly cloudy starting overnight.': 14,
'Mostly cloudy starting overnight.': 15,

'Mostly cloudy until night and breezy in the afternoon.':

'"Mostly cloudy until evening.': 17,
'Foggy throughout the day.': 18,
'Partly cloudy starting in the morning.': 19,

'Partly cloudy starting in the morning continuing until
evening.': 20,

'Foggy until morning.': 21,

'"Partly cloudy starting in the morning continuing until
night.': 22,

'Mostly cloudy starting in the morning.': 23,

'Foggy starting in the evening.': 24,

'"Partly cloudy starting in the afternoon continuing until
evening.': 25,

'Foggy overnight.': 26,

'Clear throughout the day.': 27,

'Partly cloudy starting overnight continuing until night.':
28,

'"Partly cloudy overnight.': 29,

'Partly cloudy starting overnight continuing until
evening.': 30,

'"Foggy until night.': 31,

'"Partly cloudy in the morning.': 32,

'Foggy starting overnight continuing until afternoon.': 33,

'Foggy until afternoon.': 34,

'Breezy and mostly cloudy overnight.': 35,

'"Partly cloudy overnight and breezy starting in the morning
continuing until afternoon.': 36,

'Breezy in the morning and foggy in the evening.': 37,

'"Mostly cloudy until evening and breezy in the evening.':
38,

'Mostly cloudy starting in the evening.': 39,

'"Mostly cloudy throughout the day and breezy starting
overnight continuing until afternoon.': 40,

'Breezy starting in the morning continuing until night.':
41,

'Overcast throughout the day and breezy starting overnight
continuing until morning.': 42,

'Breezy starting overnight continuing until morning and
foggy in the evening.': 43,

'Light rain until morning.': 44,
'Mostly cloudy until night and breezy starting in the
afternoon continuing until night.': 45,

10

'"Mostly cloudy starting in the morning continuing until
afternoon.': 4o,
'"Breezy until afternoon and overcast throughout the day.':

47,

'"Partly cloudy until evening and breezy in the afternoon.':
43,

'Breezy starting overnight continuing until morning and
partly cloudy starting overnight continuing until evening.': 49,

'Light rain starting overnight.': 50,

'Partly cloudy starting overnight continuing until evening
and breezy starting in the morning continuing until evening.':
51,

'Foggy starting in the morning continuing until evening and
breezy in the evening.': 52,

'"Partly cloudy throughout the day and breezy in the
afternoon.': 53,

'Mostly cloudy starting overnight continuing until evening
and breezy starting overnight continuing until morning.': 54,

'Partly cloudy starting overnight continuing until evening

and breezy in the morning.': 55,
'Overcast throughout the day and breezy overnight.': 56,
'Light rain in the morning.': 57,
'Rain until morning.': 58,

'Breezy in the morning and mostly cloudy starting in the
evening.': 59,

'"Mostly cloudy starting in the morning and breezy
overnight.': 60,

'"Partly cloudy starting overnight and breezy starting in the
morning continuing until afternoon.': 61,

'Partly cloudy starting in the morning and breezy starting
in the afternoon continuing until evening.': 62,

'"Partly cloudy starting in the morning continuing until
evening and breezy in the afternoon.': 63,

'Foggy starting overnight continuing until morning and
breezy in the afternoon.': 64

1)

3. One hot encoding:

summary enc = pd.get dummies (weather data['Summary'])

Drop original 'Summary' column

weather data.drop('Summary', axis=1l, inplace=True)

Concatenate with the original dataframe

weather data = pd.concat ([summary enc, weather datal, axis=I1)

weather data.head()

Breezy Hreeey Breezy Breesy Dangerously
Breezy and and - .
Breezy and and Clear Windy and Drizzle
and Dry Foggy Hastly Overcast partly Partly Cloudy
Cloudy Cloudy
Formatted
Date
2006-04-01
00:00:00.000 (] 0 (1] 0] 0 0 (o]]
+0200
2006-04-01
01:00:00.000 (4] 0 Q (1]] 1] 0 o a
+0200
2006-04-01
02:00:00.000 o 0 Q (8] 0 (4] 0 0 o
+0200
2006-04-01
03:00:00.000 4] 0 L] (¢] 0 0 0] a
+0200
2006-04-01
04:00:00.000 L] 0 (1] 0] 0 0 (o]]
+0200

5 rows x 37 columns

4. Feature scaling:

12

One of the problems that the algorithm often faces is that it gets biased towards larger values. To

avoid this problem, we scale the numerical data to bring it in a small range.

from sklearn.preprocessing import StandardScaler

Separate the target variable
a = weather data.drop('Precip Type', axis=1l)

Initialize the StandardScaler
scaler = StandardScaler ()

scaled features = scaler.fit transform(a)

Update the original weather data with the scaled

weather datala.columns] = scaled features

1 weather_data.head()

Breezy Breezy Dangerously
Breezy Hreeay and Breezy and Windy and
Breezy and and Clear
and Dry Fo Mostly Gvrereast Partly Partly
BBy Cloudy Cloudy Cloudy
Formatted
Date
2008-04-01
00:00:00.000 -0.023732 -0.003229 0019104 -0.073537 0074392 -0.063559 -0.35548 -0.003229
+0200
2006-04-01
01:00:00.000 -0.023732 -0.003222 -0.019104 -0.073537 -0.0743%2 -0.063559 -0.35548 -0.003229
+0200
2008-04-01
02:00:00.000 -0.023732 -0.003229 -0.019104 -0.073537 -0.074392 -0.063559 -0.35548 -0.003229
+0200
2008-04-01
03:00:00.000 -0.023732 -0.003229 -0.019104 -0.073537 -0.074392 -0.063539 -0.35548 -0.003229
+0200
2006-04-01
04:00:00.000 -0.023732 -0003229 -0019104 -0073537 -0.074392 -0.063559 -0.35548 -0.003229
+0200

yrows x 36 columns

Drizzle

-0.020166

-0.020166

-0.020166

-0.020166

-0.020166

Dry

-0.018829

-0.018829

-0.018829

-0.018829

-0.018329

13

7. Model Selection Comparison Analysis:
Bar chart showcasing prediction accuracy of all models:

Model Prediction Accuracy

Prediction Accuracy (%)

Precision, recall comparison of each model:

Precision emphasizes the accuracy of positive predictions among all positive predictions. Recall

emphasizes the model's ability to correctly identify all positive instances among all actual
positive instances.

Precision = (True Positive)/(True Positive + False Positive)
Recall = (True Positive)/(True Positive + False Negative)
Decision Tree:

Precision =1
Recall =1

i (] 1 from sklearn.metrics import precision_score

SN N)

3 precision = precision_score(y_test, y_pred_des)
4 print("Precesion of Decesion tree",precision)

Precesion of Decesion tree 1.@

% [121] 1 from sklearn.metrics import recall_score
2 recall = recall_score(y_test, y_pred_des)

3 print("recall of Decesion tree",recall)

recall of Decesion tree 1.0

14

Random Forest:
Precision =1
Recall =1

v [129]1 1 from sklearn.metrics import precision_score

o
=5

3 precision = precision_score(y_test, y_pred)
4 print("Precesion of Random forest",precision)

Precesion of Random forest 1.8

7 @ 1from sklearn.metrics import recall_score
2 recall = recall_score(y_test, y_pred)
3 print("recall of Random forest",recall)

recall of Random forest 1.8

Gradient Boosting:
Precision = 1
Recall = 1

w1281 1 from sklearn.metrics import precision_score
5

<

3 precision = precision_score(y_test, y_pred_g)
4 print("Precesion of Gradient boosting",precision)

Precesion of Gradient boosting 1.0
-0 ics i
o 1 from sklearn.metrics import recall_score

2 recall = recall_score(y_test, y_pred_g)
3 print("recall of Gradient boosting",recall)

recall of Gradient boosting 1.8

Naive Bayes(with Scaling):
Precision =0.111
Recall = 0.999
w [1271 1 from sklearn.metrics import precision_score
2

3 precision = precision_score(y_test, y_gnb)
4 print("Precesion of Naive Bayes",precision)

Precesion of Naive Bayes 8.11148835658674882
v @ 1from sklearn.metrics import recall_score

2 recall = recall_score(y_test, y_gnb)
3 print("recall of Naive Bayes",recall)

recall of Naive Bayes ©.0998538383838383

As we can see, the first three models all give extremely accurate predictions, with 0 error so both
precision and recall are 1, meaning there are no false positives or false negatives. However, the
Naive Bayes model is extremely inaccurate in this case, with a very low precision meaning that
there is a huge amount of false positives, which for our data means that it is extremely likely to
predict that it is going to rain on days when it will snow, which is likely to inconvenience anyone

15

following this model. This shows that the naive bayes model is not a good algorithm for this
particular dataset.

Confusion matrix:
Decision tree:

True

Class 0 (Rain)

Class 1 (snow)

Decesion Tree Heatmap
25000

20000
25613 0

15000

10000

0 3168
5000

Class 0 (Rain) Class 1 (Snow)
Predicted

Random Forest:

True

Class 0 (Rain)

Class 1 (snow)

Random Forest Heatmap
25000

20000
25613 0

15000

10000

0 3168
5000

Class 0 (Rain) Class 1 (Snow)
Predicted

Gradient Boosting:
Gradient Boosting Heatmap

3 |
=) 0
@
=
B
- 0 3168
Class 0 (Rain) Class 1 (Snow)
Predicted
Naive Bayes(with scaling):
Naive Bayes Heatmap
£ ..
o 369 3
@
=
Class 0 (Rain) Class 1 (Snow)

Predicted

16

Github Link:
https://github.com/shihabmuhtasim/Machinearning-Model-Weather-Prediction-Rain-Snow-

Models used

Random Forest:

Create a multitude of decision trees, each with its perspective.

Gather predictions from all trees and select the most common prediction.

This ensemble approach helps balance out individual weaknesses and provides a robust
prediction.

Gradient Boosting:

Begin with an initial decision tree that may have errors.

Focus on correcting the mistakes made by the initial model.

Build subsequent models to fix errors of the previous ones, step by step.
This iterative process improves accuracy over time by refining predictions.

Decision Tree Classifier:

Construct a tree-like model of decisions and their possible consequences.
Split data into subsets based on conditions that maximize information gain.
Reach a leaf node that represents a decision or classification.

Easy to interpret, useful for visualizing decision-making processes.

Naive Bayes Classifier:

Based on Bayes' theorem, a probabilistic approach to classification.
Assumes features are conditionally independent given the class label.
Calculates probabilities for different classes based on features.
Efficient and effective for text classification and simple datasets.

17

