
1

CSE471 : System Analysis and Design
Project Report

Project Title : Wearwise - An Online Clothing Rental Service Website

Group No : 03, CSE471 Lab Section : 09, Summer
2023

ID Name

21301610 Shihab Muhtasim

21301274 Nusaiba Alam

20301326 Sartaj Emon Prattoy

s

2

Table of Contents

Sectio
n
No

Content Page No

1 Introduction 3

2 Functional Requirements 5

3 User Manual 9

4 Frontend Development 31

5 Backend Development 62

6 Technology (Framework, Languages) 95

7 Github Repo Link 97

8 Individual Contribution 97

3

Introduction

Introduction:
Welcome to the project report of "Wearwise - An Online Clothing Rental Service
Website." The genesis of this project traces back to the semifinals of the esteemed
Hult Prize competition, where our innovative concept caught attention and stirred
excitement. Our journey through this project has been marked by consistent
progress and dedication, with each week bringing us closer to creating a seamless
and user-friendly platform.

Project Overview:
The Wearwise project is a testament to the synergy of fashion, technology, and
convenience. We've divided our project into modules, and each week, we focused
on developing a specific module to ensure comprehensive coverage of all aspects
of the platform.

Admin Panel
In the first week, our attention was on setting up the administrative backbone of
Wearwise. This module encompasses the core functionalities required for smooth
platform management. We implemented features such as login and registration,
session management, and the ability to add, edit, and delete products. Moreover,
the management of categories and apparel was integrated, laying the foundation for
efficient cataloging.

Home/Shop
With the administrative framework in place, we turned our focus to the user-facing
aspect of Wearwise. The second week revolved around creating an inviting and
intuitive homepage for users to browse through our selection. We implemented
features for displaying products, including their size, description, price, and vendor
name. The ability to sort products by category and apparel, along with a search
function, further enhances the shopping experience. We also worked on refining
the cart management, allowing users to update and delete items.

User Dashboard

4

Continuing our march towards a complete platform, the third week was dedicated
to developing the user dashboard. We focused on features that enable users to have
a personalized experience. This includes viewing and editing their profiles, as well
as checking their order history. The integration of an online payment gateway
using cards enhances the convenience of transactions. While we worked on order
confirmation and customer reviews, some aspects, such as viewing return dates of
ordered items, remain works in progress.

Vendor Management
In the final week, our attention shifted to empowering vendors to participate in the
Wearwise ecosystem. We created the vendor registration process, ensuring vendor
approval by the admin. Vendors can log in, post products for approval, and manage
their pending and approved products. We also worked on a dashboard tailored for
vendors, providing essential insights into their orders.

Conclusion:
The Wearwise project encapsulates our dedication to creating a revolutionary
online clothing rental service website. By systematically developing each module
over the course of four weeks, we have laid the groundwork for a platform that
seamlessly connects users and vendors in the world of fashion. This project report
will delve into the details of each module, showcasing the progress made and the
features available, with a keen eye on enhancing user experience and convenience.

5

Functional Requirements

Module 1: Admin Panel

1. Login & Registration:

● Admin should be able to log in using valid credentials.
● New admins should be able to register with unique details.
● The password provided by the admin should be protected by hashing.

2. Logout & Session Management:

● Admin should be able to log out securely.
● Session should expire after logout

3. Product Management:

● Admin should be able to add new products with details.
● Admin should be able to view, edit, and delete existing products.
● Admin should be able to approve or reject vendor projects
4. Category & Apparel Management:

● Admin should be able to add, edit, and delete categories and apparels.
● Products should be associated with the appropriate category and apparel.

5. Dashboard Features:

● Admin should have a dashboard showing important statistics from
database

● The dashboard should have options to view order details, customer
details, manage products, adding apparels and categories, logout,
different account signup options in a sidebar and header.

6. Order & Customer Management:

● Admin should be able to view orders placed by customers.

6

● Admin should be able to delete the order when it is captured
● Admin should be able to view customers and delete anyone.

7. Vendor Management:

● Admin should be able to approve or reject vendor registration.
● Admin should be able to manage vendor accounts and products.

Module 2: Home / Shop

1. Homepage Products Display:
● Users should see a list of products on the homepage.
● Products should display relevant information like image, description, price,

etc.

2. Product pagination & Search:
● Users should be able to paginate products on different pages.
● Users should be able to search for products using keywords.

3. Shopping Cart:
● Users should be able to add products to their shopping cart from the

homepage or product details page.
● User can rent items according to their preferable quantity
● Users should be able to rent for minimum the days given by the admin or

vendor and maximum to their choice.

4. Add review/reply/comment on product
● User can add review to each product
● They can also reply.
● Comments are visible below the product details

7

5. User Authentication & Registration:
● Users should be able to register and log in.
● Logged-in users should have access to additional features.

Module 3: User Dashboard

1. Profile Management:
● Users should be able to view and edit their profile information.

2. Online Payment Gateway:
● Users should be able to make online payments securely.

3. Order Placement & History:
● Users should be able to place orders and view their order history.
● Users should see estimated return dates for items they've ordered.
● Users should be able to download their ordered item details in pdf form.

4. Review:
● Users should be able to add reviews and ratings for products.

5. Delete or remove cart items:
● Users should be able to remove and delete items in the cart.

6. Checkout:
● Users should be able to proceed to checkout from the cart.
● They can checkout or continue shopping which will take them back to the

home page.
● They can confirm their order either by cash on delivery or card payment

8

Module 4: Vendor Management

1. Vendor Registration & Login:

● Vendors should be able to register and await admin approval.
● The password provided by the vendor should be protected by hashing.
● Vendors should be able to login once approved by admin and logout

when they want.
● After logout, none of the pages should be accessible.

2. Vendor Product Submission:
● Vendors should be able to submit products for approval.
● Vendors should be able to view, edit and delete their unapproved

products.
● Vendors should be able to see and delete their approved products.

3. Order Management:
● Vendors should be able to view orders placed for their products and

delete those.
4. Vendor dashboard:

● Vendor dashboard should have necessary information fetched from the
database to give an overall look of the business.

● Should contain options for necessary actions in the sidebar and header.

9

User Manual

Admin panel:
There are 11 major features for the admin panel. Those are, Login & Registration,
logout & session management on all pages, product management, category
management, apparel management,admin sidebar, header,dashboard features
design, view orders,view Customers.

1. Registration: To be an admin one needs to fill up a form where they have to
put a reference key, use a unique username and match their passwords
mandatorily to become an admin

2. Login: An admin can login to see an admin dashboard with username and
password if both the username and password matches in the database.
Admin will see a dashboard with many necessary fields of information of
the business to understand current status.

10

3. Logout: Admin can log out using the logout button that can be found in the
admin dashboard.

11

4. Add product: An admin can add products to the website under name Wear
wise brand by going through Manage products-> Add products-> fill up the
form and launch the product.

5. View product: This button takes admin to see all the products with option to
edit any details or delete those.

12

6. Approve vendor products: Admin can see all product post requests from
vendors and he can delete it or approve it.

7. Approve vendors: Admin can see all requests for vendors and he can
approve or delete those by selecting these buttons.

8. View certified vendors: Admin can see all approved vendors and delete any
where if any product is up by this vendor also gets deleted.

13

9. Manage category: This button shows all categories available along with
options to add, edit or delete any.

10.Manage apparel: This button shows all apparels available along with options
to add, edit or delete any.

14

11.View orders: Admin can view all orders and delete any by selecting the red
delete button.

12.View customers: Admin can view all customers and delete any by selecting
the red delete button.

13.Header Options: Admin can find many options, such as sign up as
user/vendor or login as user/vendor in the header. Also he can find options to
add products from header as well.

14.

15

15.Sidebar: Admin can find all options for the actions of admin in the sidebar.

16

Vendor Panel:
The Vendor Panel of Wearwise offers a range of features designed to empower
vendors in managing their products, orders, and profiles effectively. This user
manual outlines the functionalities available within the Vendor Panel, providing a
comprehensive guide to navigating this platform.

1. Registration: Prospective vendors can initiate the registration process by
completing a form. The form requires a distinct username, and passwords
that match. This ensures secure access to the vendor panel upon approval.

2. Login: Upon successful registration and approval, vendors can log in using
their designated username and password. This will grant access to the
Vendor Dashboard, where crucial insights into product management and
order tracking are provided.

3. Vendor Dashboard: The Vendor Dashboard serves as a hub for assessing the
current status of one's business operations. It offers a comprehensive view of
key performance metrics, pending product requests, approved product
listings, and order tracking details.

17

4. Logout: vendors can securely log out of the Vendor Panel by selecting the
"Logout" option available within the dashboard.

5. Add Product: Vendors looking to list new products on Wearwise can utilize
the "Add Product" feature. This involves populating a form with
product-specific details. The submitted product will be subject to admin
approval before becoming visible on the platform.

6. View Pending Products: The "Pending Products" section provides a catalog
of products awaiting administrative approval. Vendors possess the ability to
review and manage these pending products, including the option to edit or
delete entries.

7. View Approved Products: The "Approved Products" section showcases
products that have received admin approval. This overview allows vendors

18

to access detailed product information and offers the option to remove
listings as needed.

8. View Orders: Vendors can monitor orders that pertain to their specific
product offerings within the "View Orders" section. This display provides
essential order information, including customer details and order status.

9. Sidebar Options: Access to all vendor-specific actions is available through
the sidebar.

19

10.Header Options: Located at the top of the page, the header section provides
access to user and vendor sign-up options. Vendors can also initiate the login
process and manage their account from this point. The "Add Product" option
is also conveniently accessible in the header.

20

Homepage:
The Home / Shop module in Wearwise is designed to provide users with an
effortless and engaging shopping experience. This user manual will guide you
through the functionalities of the homepage and the products page, as well as how
to navigate and utilize the Cart, Order, Profile, User Login, and User Registration
features.

1. Homepage Products Display: Upon entering the Wearwise website, the
homepage greets you with a curated display of products. This section
showcases featured items, trends, and new arrivals, providing an overview of
the product offerings.

2. Specific Homepage: For guest users, in the header section it will show the
Signup or register button which will redirect them to the signup or register

21

panel. But registered users can access the logout button instead.

3. Header : Located at the top of the page, the header section provides access to
user, admin and vendor sign-up options. There are specific on click buttons
for Order, Profile, Cart.

4. Products details: When you navigate to the Products details page, you'll find
a comprehensive catalog of items available for rent. Each product listing
includes essential details such as description, price, rental duration in days,

22

and the name of the vendor offering the product.

5. Search Products: Looking for something specific? Utilize the search bar to
find products that match your criteria. You can even sort the search results

23

based on price, from low to high.

6. Cart Management: The Cart is where you can review and manage the items
you intend to rent. You can add products to the cart, update the quantities, or
remove items that you no longer wish to rent.

7. User Login and Logout: To access your personal account and dashboard, use
the User Login feature. Input your credentials (email and password) to

24

securely log in. Logging out can be done from any page, ensuring the
protection of your account.

8. User Registration: New to Wearwise? Registering is easy! Click on the User
Registration option, fill in the required details, and create a unique username
and password. Upon successful registration, you'll gain access to your

25

personalized User Dashboard.

9. Session Management: Enjoy a seamless browsing experience with session
management across all pages. This feature ensures that your login status and
browsing history are maintained as you navigate through the website.

26

10. Footer : This code snippet defines a footer section for a website. It consists
of a container with two columns, the left column displaying the logo and
contact information, while the right column contains navigational menus,
account links, and a newsletter subscription form. The footer provides a
well-structured layout with essential website elements, including links to
different pages, account-related actions, and a newsletter subscription
option.

27

User Dashboard:
The User Dashboard of our ecommerce project offers a centralized and intuitive
hub for customers to manage their shopping experience. Through this dashboard,
users can effortlessly navigate and control various aspects of their account and
orders. Key features include:

1. View Profile: Upon accessing your User Dashboard, you can view and
manage your profile information. Make updates as needed to maintain
accurate and current details.

2. Online Payment Gateway: For secure and convenient transactions, Wearwise
offers an online payment gateway that supports card payments. This allows
you to easily make rental payments for selected products.

28

3. Order Confirmation: Receive order confirmations for successful
transactions, ensuring that your rental choices are accurately recorded.

4. Edit Profile: Need to update your profile information? The Edit Profile
feature allows you to modify your details as necessary.

29

5. View Orders: Stay informed about your rental history by accessing the View
Orders section. This provides an overview of your previous rental
transactions.

6. View Return Dates of Ordered Items (Incomplete): An upcoming feature
will allow you to view the expected return dates of items you've rented,
ensuring that you can plan accordingly.

7. Customer Review: Share your experiences and insights with other users by
adding customer reviews. This feature encourages a community-driven
approach to product evaluation.

30

8. Cart Checkout: When you're ready to finalize your rental selections, navigate
to the Cart and proceed to the checkout process. This will guide you through
the steps to complete your rental.

If you encounter any challenges or have inquiries, our support team is available to
assist you. Enjoy your shopping experience and maximize the benefits of our
platform!

31

Frontend Development

Module 1: Admin Panel

1. Signup: (Login page similar)
<div class="content-wrapper">

@if(session()->has('message'))

<div class="alert alert-info">

{{session()->get('message')}}

</div>

@endif

Form:
<h1 class="text-center fw-bold" style="color: green; font-family:

'Montserrat', sans-serif;">SIGN UP AS ADMIN</h1>

<form action="{{url('/')}}/adminsignup" method="post">

@csrf

<div class="row">

<!-- Name box-->

<div class="col-md-6 mb-3">

<label for="Name" class="form-label fw-bold">Name</label>

<input type="text" maxlength="30" class="form-control"

id="Name" name="Name" aria-describedby="nameHelp" required="required">

</div>

<!--pohone num box-->

<div class="col-md-6 mb-3">

<label for="phone_number" class="form-label fw-bold">Phone

number</label>

<input type="tel" class="form-control" id="phone_number"

name="phone_number" aria-describedby="phoneHelp" required="required">

<div id="phoneHelp" maxlength="15" class="form-text">Enter

a valid phone number</div>

</div>

32

<!--Reference box-->

<div class="col-md-6 mb-3">

<label for="ref_code" class="form-label fw-bold">Reference

Code</label>

<input type="text" maxlength="5" class="form-control"

id="ref_code" name="ref_code" aria-describedby="ref_code_Help"

required="required">

<div id="ref_code_Help" maxlength="5"

class="form-text">Enter reference code given by other admins</div>

</div>

<!--Reference Generate box-->

<div class="col-md-6 mb-3">

<label for="ref_code_gen" class="form-label fw-bold">Your

reference Code</label>

<input type="text" maxlength="5" class="form-control"

id="ref_code_gen" name="ref_code_gen" aria-describedby="ref_code_Help"

required="required">

<div id="ref_code_Help" maxlength="5"

class="form-text">Enter a reference code that you'd like to use for other

new admin signups</div>

</div>

<!--Email box-->

<div class="col-md-6 mb-3">

<label for="email" class="form-label fw-bold">Email

address</label>

<input type="email" maxlength="50" class="form-control"

id="email" name="email" aria-describedby="emailHelp" required="required">

</div>

<!--username box-->

<div class="col-md-6 mb-3">

<label for="username" class="form-label

fw-bold">Username</label>

<input type="text" maxlength="15" class="form-control"

id="username" name="username" aria-describedby="usernameHelp"

required="required">

</div>

<!--Password box-->

<div class="col-md-6 mb-3">

<label for="password" class="form-label

fw-bold">Password</label>

33

<input type="password" maxlength="30" class="form-control"

id="password" name="password" required="required">

</div>

<!--Confirm pass box-->

<div class="col-md-6 mb-3">

<label for="cpassword" class="form-label fw-bold">Confirm

Password</label>

<input type="password" class="form-control" id="cpassword"

name="cpassword" required="required">

<div id="cpassword" maxlength="30"

class="form-text">Please enter the password again.</div>

</div>

</div>

<!--Sign up button button-->

<div class="text-center" >

<button type="submit" class="btn btn-primary bg-success

fw-bold">Sign Up as Admin</button>

</div>

</form>

This code represents a signup form for the admin panel. It captures details such as
name, phone number, reference code, email, username, and password for admin
registration. Validation checks are included, and a signup button is provided for
admin registration. An alert is displayed if there's a session message. Login code is
similar to this.

2. Add Product (Edit product similar):
<form action="{{url('/add_product')}}" method="post"

enctype="multipart/form-data">

@csrf

34

<!-- Product Name-->

<div class="form-outline mb-2 w-30 m-auto">

<label for="product_title" style="color: white;"

class="form-label fw-bold">Product Name</label>

<input type="text" class="form-control" id="product_title"

name="product_title" aria-describedby="Product_name_help"

placeholder="Enter product name" required="required" autocomplete="on">

</div>

<!-- Category select-->

<div class="form-outline mb-2 w-30 m-auto">

<label for="product_category" style="color: white;"

class="form-label fw-bold">Product Category</label>

<select name="product_category" class="form-select"

aria-label="Default select example">

<option selected>Pick a category</option>

@foreach ($cat as $cat)

<option

value="{{$cat->id}}">{{$cat->catagory_name}}</option>

@endforeach

</select>

</div>

<!-- Appreal select-->

<div class="form-outline mb-2 w-30 m-auto">

<label for="product_apparel" style="color: white;"

class="form-label fw-bold">Product Apparel</label>

<select name="product_apparel" class="form-select"

aria-label="Default select example">

<option selected>Pick an apparel</option>

@foreach ($app as $app)

<option

value="{{$app->apparel_id}}">{{$app->apparel_name}}</option>

@endforeach

</select>

</div>

<!-- product_price-->

<div class="form-outline mb-2 w-30 m-auto">

35

<label for="product_price" style="color: white;"

class="form-label fw-bold">Product Price </label>

<input type="text" class="form-control" id="product_keywords"

name="product_price"

aria-describedby="product_price_help" placeholder="Enter

product Price" autocomplete="on" required="required" >

</div>

<!-- product_discount_price-->

<div class="form-outline mb-2 w-30 m-auto">

<label for="product_price" style="color: white;"

class="form-label fw-bold">Product Discount Price</label>

<input type="text" class="form-control" id="product_keywords"

name="product_discount_price"

aria-describedby="product_price_help" placeholder="Enter

product discount Price" autocomplete="on" required="required" >

</div>

<!-- product_price-->

<div class="form-outline mb-2 w-30 m-auto">

<label for="product_price" style="color: white;"

class="form-label fw-bold">Days </label>

<input type="text" class="form-control" id="product_keywords"

name="product_days"

aria-describedby="product_price_help" placeholder="Enter

product Price" autocomplete="on" required="required" >

</div>

<!-- product_quantity-->

<div class="form-outline mb-2 w-30 m-auto">

<label for="product_quantity" style="color: white;"

class="form-label fw-bold">Product Quantity</label>

<input type="text" class="form-control" id="product_quantity"

name="product_quantity" placeholder="Enter product Quantity"

autocomplete="on" required="required">

</div>

<!-- Image-->

<div class="form-outline mb-2 w-30 m-auto">

<label for="product_image" style="color: white;"

class="form-label fw-bold">Product Image</label>

36

<input type="file" class="form-control" id="product_image"

name="image" required="required">

</div>

<!-- Product Description-->

<div class="form-outline mb-2 w-30 m-auto">

<label for="product_description" style="color: white;"

class="form-label fw-bold">Product Description</label>

<input type="text" class="form-control"

id="product_description" name="product_description"

aria-describedby="product_description_help" placeholder="Enter product

description" autocomplete="off" required="required">

</div>

<!-- Submit-->

<div class="form-outline mb-4 w-50 m-auto">

<input type="submit" class="form-control" id="product_insert"

name="product_insert" class="btn btn-info" value="Launch product" >

</div>

</div>

</form>

This HTML form lets admins add new products to the system. It includes fields for
product details like name, category, apparel, price, discount price, days, quantity,
image, and description. When the "Launch product" button is clicked, the data is
sent to the add_product route.

3. View Product:
<!-- TABLE-->

<h1 class="text-center text-white">Wear Wise Products</h1>

<div class="table-responsive">

<table class="table table-bordered mt-5">

<thead class="bg-secondary text-light text-center">

<tr class="text-center">

<th>ID</th>

<th>Name</th>

37

<th>Image</th>

<th>Price</th>

<th>Discount Price</th>

<th>Quantity</th>

<th>Day count on price</th>

<th>Vendor</th>

<th>Edit</th>

<th>Delete</th>

</tr>

<tbody style="background-color: #eaf4f4; color: #333;">

@foreach($product_data as $product_data)

<tr class='text-center'>

<td>{{$product_data->product_id}}</td>

<td>{{$product_data->product_title}}</td>

<td>

image}}"

class="product-image">

</td>

<td>{{$product_data->price}}</td>

<td>{{$product_data->discounted_price}}</td>

<td>{{$product_data->quantity}}</td>

<td>{{$product_data->days}}</td>

<td>{{$product_data->vendor_name}}</td>

<td><a onclick="return confirm('Confirm Edit?')" class="btn

btn-success"

href="{{url('edit_product',$product_data->product_id)}}">Edit</td>

<td><a onclick="return confirm('Confirm Delete?')" class="btn

btn-danger"

href="{{url('delete_product',$product_data->product_id)}}">Delete</td>

</tr>

38

@endforeach

This code segment displays a table of Wear Wise products using Bootstrap styling.
It lists various attributes of the products like ID, name, image, price, discount price,
quantity, day count on price, and vendor. For each product in the dataset, it
generates a table row with corresponding data. The "Edit" and "Delete" buttons
allow administrators to perform respective actions on the products.

4. Manage Category:(Manage Apparel similar)

<h2 class="text-center">Insert Catagories</h2>

<form action="{{url('add_catagory')}}" method="post" class="mb-2" >

@csrf

<div class="input-group w-90 mb-2">

<i

class="fa-solid fa-receipt"></i>

<input type="text" class="form-control" name="catagory_name"

placeholder="Insert Catagories" aria-label="Categories"

aria-describedby="basic-addon1" style="color: white;">

</div>

<div class="input-group w-10 mb-2 m-auto">

<input type="submit" class="bg-info border-0 p-2 my-3"

name="insert_catagories" value="Add Catagories" aria-label="Insert

Categories" aria-describedby="basic-addon1" class="bg-info">

</div>

</form>

<!-- TABLE-->

<h1 class="text-center text-white">Wear Wise Categories</h1>

<table class="table table-bordered mt-5">

<thead class="bg-secondary text-light text-center">

<tr class="text-center">

<th>Category ID</th>

<th>Category Name</th>

<th>Edit</th>

39

<th>Delete</th>

</tr>

<tbody style="background-color: #eaf4f4; color: #333;">

@foreach ($data as $data)

<tr class='text-center'>

<td>{{$data->id}}</td>

<td>{{$data->catagory_name}}</td>

<td><i class='fa-solid

fa-pen-to-square'></i></td>

<td><a onclick="return confirm('Confirm Delete?')" class="btn

btn-danger" href="{{url('delete_catagory',$data->id)}}">Delete</td>

</tr>

@endforeach

This code snippet manages categories in the Wear Wise app. It offers a form to add
categories and displays them in a table. The table shows Category ID, Name, and
Delete option. The Edit option is a placeholder link.

5. Dashboard:
<!--New card Total prods-->

@php

$proCount = $product_data->count();

@endphp

<div class="row">

<div class="col-xl-3 col-sm-6 grid-margin stretch-card">

<div class="card">

<div class="card-body">

40

<div class="row">

<div class="col-9">

<div class="d-flex align-items-center

align-self-start">

<h3 class="mb-0">{{ $proCount }} Types</h3>

</div>

</div>

<div class="col-3">

<div class="icon icon-box-success ">

<span class="mdi mdi-arrow-top-right

icon-item">

</div>

</div>

</div>

<h6 class="text-muted font-weight-normal">Total

Product Types</h6>

</div>

</div>

</div>

<!--New card orders total-->

@php

$orderCount = $order_data->count();

@endphp

@php

$totalPrice = $order_data->sum('price');

@endphp

@php

$userCount = $cus_data->count();

@endphp

@php

$w_Price = $w_order->sum('price');

@endphp

41

@php

$t_Price = $order_data->sum('price');

$w_Price = $w_order->sum('price');

$vp_sale= t_Price-w_Price

@endphp

@php

$t_Price1 = $order_data->sum('price');

$w_Price2 = $w_order->sum('price');

$vp_sale3= ($t_Price1-$w_Price2)*0.1

@endphp

This code segment creates a dashboard displaying statistics for a Wear Wise app. It
calculates and presents counts of product types, orders, users, and vendor-specific
sales. It also computes and displays the difference between total and vendor sales,
considering a percentage.

6. Sidebar, Navbar, header:
Navbar:
<li class="nav-item">

<a class="nav-link" href="userlogin"

style="font-weight: bold;">Login

<li class="nav-item">

<a class="nav-link" href="usersignup"

style="font-weight: bold;">Signup

<a class="nav-link" href="adminlogin"

style="font-weight: bold;">Admin Login

Header:
<li class="nav-item dropdown">

<a class="nav-link" id="profileDropdown" href="#"

data-toggle="dropdown">

42

<div class="navbar-profile">

<img class="img-xs rounded-circle"

src="admin/assets/images/faces/face15.jpg" alt="">

<p class="mb-0 d-none d-sm-block

navbar-profile-name">{{session('admin')}}</p>

<i class="mdi mdi-menu-down d-none

d-sm-block"></i>

</div>

<div class="preview-thumbnail">

<div class="preview-icon bg-dark

rounded-circle">

<i class="mdi mdi-logout text-danger"></i>

</div>

</div>

<div class="preview-item-content">

<p class="preview-subject mb-1" >Log out</p>

</div>

Sidebar:
Manage Products

<i class="menu-arrow"></i>

<div class="collapse" id="ui-basic">

<ul class="nav flex-column sub-menu">

<li class="nav-item"> <a class="nav-link"

href="{{url('/view_product')}}">Add Products

<li class="nav-item"> <a class="nav-link"

href="{{url('/show_products')}}">View Products

<li class="nav-item"> <a class="nav-link"

href="{{url('/a_v_show_products')}}">Approve vendor

products

<li class="nav-item menu-items">

43

<i class="mdi mdi-playlist-play"></i>

Manage Category

7. View Orders:
<h1 class="text-center text-white">Wear Wise Products</h1>

<div class="table-responsive">

<table class="table table-bordered mt-5">

<thead class="bg-secondary text-light text-center">

<tr class="text-center">

<th>Order ID</th>

<th>Customer Name</th>

<th>phone</th>

<th>address</th>

<th>Product Name</th>

<th>Image</th>

<th>Price</th>

<th>Quantity</th>

<th>Start date</th>

<th>End date</th>

<th>Vendor</th>

<th>Delete</th>

</tr>

<tbody style="background-color: #eaf4f4; color: #333;">

@foreach($product_data as $product_data)

<tr class='text-center'>

<td>{{$product_data->id}}</td>

<td>{{$product_data->name}}</td>

<td>{{$product_data->phone}}</td>

<td>{{$product_data->address}}</td>

44

<td>{{$product_data->product_title}}</td>

<td>

image}}"

class="product-image">

</td>

<td>{{$product_data->price}}</td>

<td>{{$product_data->quantity}}</td>

<td>{{ $product_data->created_at->format('Y-m-d') }}</td>

@php

$daysToAdd = $product_data->day; // Change this to the number of days

you want to add

$newDate = $product_data->created_at->addDays($daysToAdd);

@endphp

<td>{{ $newDate->format('Y-m-d') }}</td>

<td>{{$product_data->vendor_name}}</td>

<td><a onclick="return confirm('Confirm Delete?')" class="btn

btn-danger"

href="{{url('delete_orders',$product_data->id)}}">Delete</td>

</tr>

@endforeach

</tbody>

This code snippet represents a table that displays order details, including customer
information, product details, dates, and vendor information. The foreach loop
iterates through the $product_data collection to populate the table rows with the
respective order details. The code also calculates the end date based on the
specified number of days to add to the creation date.

45

Module 2: Home

46

1. Header for user:

This code snippet represents a responsive header section for a website. It
includes a navigation bar with a logo, links to various pages such as Home,
About, Testimonial, Products, Blog, Contact, Order, and Profile, along with
a search button. The navigation items are organized in a collapsible
dropdown menu for smaller screens. The code uses Bootstrap classes and
dynamic URL references for routing.

47

2. Header for guest user:

This code snippet creates a responsive header section for a website using
Bootstrap's navigation components. It includes a logo, a collapsible
navigation menu with links to Home, About, Testimonial, Products, Blog,
and Contact pages. There's also a search button within the header.
Additionally, there are "Login" and "Register" buttons styled as primary
buttons. The navigation items and buttons are organized and styled within a
container.

48

3. Slider:

This code snippet creates a responsive image slider section with a
promotional message and a "Shop Now" button, utilizing Bootstrap's
carousel component.

4. Product display with pagination :

49

This code snippet creates a product section displaying items with details,
vendor information, and an "Add to Cart" option. Users can search for
products and adjust quantity and rental days. It also handles discounts and
pagination, with Bootstrap styling.

5. Search for products:

This code snippet represents a product section within a webpage layout. It
includes a container with a centered heading indicating "Our Products." The
section incorporates a search form allowing users to search for specific
items. The section also starts a row for displaying individual product items.

50

6. Why shop with us :

Describes the pros of our product and website.

7. Footer :

This code snippet defines a footer section for a website. It consists of a
container with two columns, the left column displaying the logo and contact
information, while the right column contains navigational menus, account
links, and a newsletter subscription form. The footer provides a
well-structured layout with essential website elements, including links to

51

different pages, account-related actions, and a newsletter subscription
option.

8. Product description :

This HTML document is a template for a web page, likely for a
fashion-related website. It includes meta tags for basic information,
references to CSS and JavaScript files for styling and functionality, and a
structure for displaying user profile information. The template also includes
a navigation header, a hero section, and a user profile card with details such
as username, email, phone number, name, address, and an edit profile link. It
utilizes Bootstrap for styling and interactivity, and includes a script to store
and restore scroll position when the page is refreshed.

52

9. Product Details :

This HTML document serves as a template for a web page, likely related to
a fashion website. It features a header section, a central content area
displaying detailed product information, and a footer section. The content
area includes an image of the product, its title, pricing details (including
discounts), product description, available quantity, and vendor name. Users
can specify the quantity and rental days before adding the item to the cart.
The template employs Bootstrap for styling and interactivity and provides a
responsive design for various devices. It concludes with copyright
information and attribution links in the footer.

53

Module 3: User Dashboard

1. Add to Cart :

The frontend development of the e-commerce template comprises a
well-structured layout with a header, shopping cart display in tabular
format, and options for proceeding to checkout. It features responsive
design using Bootstrap, includes a 'sweet alert' library for user alerts
and confirmations, and enables users to remove items from the cart.
The template also offers buttons to continue shopping, opt for cash on
delivery, or make a card payment. Overall, it creates a seamless and
user-friendly shopping experience with clear product information and
payment choices.

54

2. Order Details :

This HTML document represents a webpage for displaying and managing orders in
this platform. The page includes a header section with basic meta information and
styling references. The main content area is centered and contains a table
displaying order details, such as product title, vendor name, quantity, day, price,
payment status, delivery status, order date, return date, product image, cancel order
button, and a print PDF button. The table is populated dynamically using a loop
that iterates through orders fetched from the backend. The "Cancel Order" button
allows users to cancel orders with a confirmation prompt, and the "Print PDF"
button generates a PDF version of the order. The script tags at the end handle scroll
position preservation and load JavaScript dependencies for jQuery, popper,
bootstrap, and custom scripts. Overall, the page provides a comprehensive view
and management options for customer orders.

55

3. Profile view:

The page includes user details such as username, email address, phone
number, name, and address, displayed in a structured form layout. Users can
view their profile information and click on an "Edit Profile" button to make
changes. The template also includes a header section with navigation, and it
features responsive design for compatibility with different devices. It utilizes
Bootstrap for styling and includes JavaScript libraries for interactivity and
functionality.

56

4. Profile Edit :

The page allows users to edit and update their profile information. It
includes a form with fields for username, email address (readonly), phone
number, name, and address. Users can input their updated information and
submit the form to update their account details. The template features
responsive design, utilizes Bootstrap for styling, and includes header
navigation from the main template. The provided code allows users to
interactively update their profile information.

57

5. Payment gateway:

The template is integrated with the Bootstrap CSS framework and includes jQuery
and Stripe's JavaScript library for handling the payment process. The form data is
submitted to the server for processing the payment using the Stripe API. It features
responsive design and includes header navigation from the main template. The
template enables users to securely make payments using their credit cards through
Stripe's payment gateway.

58

6. Print PDF:

This HTML template generates an order details PDF document. It displays
information related to a customer's order, including their name, email, phone
number, and address. Additionally, it provides details about the purchased product,
such as its name, price, and quantity. The template also includes the payment status
of the order and the calculated return date based on the provided number of days.

The template is designed to be used for generating order-related PDFs and is
intended to be dynamically populated with data from the server. It does not include
any styling or formatting beyond the basic structure required to present the order
information in a clear and organized manner.

Module 4: Vendor Panel

1.Dashboard:
@php

$prodCount = $order_data->count();

@endphp

<div class="row">

<div class="col-xl-3 col-sm-6 grid-margin stretch-card">

<div class="card">

<div class="card-body">

<div class="row">

59

<div class="col-9">

<div class="d-flex align-items-center

align-self-start">

<h3 class="mb-0">{{$prodCount}} Posts</h3>

</div>

</div>

<div class="col-3">

<div class="icon icon-box-success ">

<span class="mdi mdi-arrow-top-right

icon-item">

</div>

</div>

</div>

<h6 class="text-muted font-weight-normal">Total

Pending products</h6>

</div>

</div>

</div>

@php

$orderCount = $order_data->count();

@endphp

@php

$totalPrice = $order_data->sum('price');

@endphp

@php

$proCount = $product_data->count();

@endphp

@php

$totalPrice1 = $order_data->sum('price');

$earn=$totalPrice1*0.95

@endphp

60

It calculates and displays various statistics related to the vendor's products and
orders. The code calculates the number of pending products, total orders, and total
earnings based on the orders' prices.

2. Show approved vendor products:

<th>ID</th>

<th>Name</th>

<th>Image</th>

<th>Price</th>

<th>Discount Price</th>

<th>Quantity</th>

<th>Day count on price</th>

<th>Vendor</th>

<th>Delete</th>

</tr>

<tbody style="background-color: #eaf4f4; color: #333;">

@foreach($product_data as $product_data)

<tr class='text-center'>

<td>{{$product_data->product_id}}</td>

<td>{{$product_data->product_title}}</td>

<td>

image}}"

class="product-image">

</td>

<td>{{$product_data->price}}</td>

<td>{{$product_data->discounted_price}}</td>

<td>{{$product_data->quantity}}</td>

<td>{{$product_data->days}}</td>

<td>{{$product_data->vendor_name}}</td>

61

<td><a onclick="return confirm('Confirm Delete?')" class="btn

btn-danger"

href="{{url('delete_product',$product_data->product_id)}}">Delete</td>

</tr>

@endforeach

Table displaying product details, including ID, Name, Image, Price, Discount
Price, Quantity, Day Count on Price, Vendor, and Delete option. The table body
iterates through product data, populating each row accordingly.

3. Rest of the pages are similar to that of Admin panels

62

Backend Development

Admin Panel:

1. Signup:

public function admin_data_store(Request $request){

if

(Adminsignup::where('username',$request['username'])->exists()){

return redirect()->back()->with('message','Username Taken');

}

elseif ($request['password'] != $request['cpassword']) {

return redirect()->back()->with('message','Password Did not

match');

}

elseif

(Adminsignup::where('reference_code',$request['ref_code'])->doesntExist())

{

return redirect()->back()->with('message','Reference code Did

not match');

}

else{

$admin_info= new AdminSignup;

$admin_info->name= $request['Name'];

$admin_info->phone= $request['phone_number'];

$admin_info->username= $request['username'];

$admin_info->email= $request['email'];

$admin_info->password= Crypt::encrypt($request['password']);

$admin_info->reference_code= $request['ref_code_gen'];

$admin_info->save();

$request->session()->put('admin_info',$request['username']);

return redirect('adminlogin');

63

}

This code handles admin registration. It checks username availability, password
matching, and reference code existence. If conditions are met, it stores encrypted
admin data and sets a session for the username, then redirects to the login page. If
conditions aren't met, relevant error messages are shown using redirect().

2. Login:
public function admin_login(Request $request){

if

(Adminsignup::where('username',$request['username'])->doesntExist()){

return redirect()->back()->with('message','Wrong username');

}

else{

$admin= AdminSignup::where ("username",

$request->input('username'))->get();

$decrepted= Crypt::decrypt($admin[0]->password);

if ($decrepted==$request['password']){

$request->session()->put('admin',$request['username']);

return redirect('admin_dashboard');

}

else{

return redirect()->back()->with('message','Password did

not match');

}

}

}

64

This code manages admin login. It verifies the username's existence, decrypts the
password for comparison, and checks whether it matches. If successful, it sets a
session for the admin's username and redirects to the admin dashboard. If not, error
messages are displayed using redirect().

3. Session Management:
i)

class AdminAuthMiddleware

{

/**

* Handle an incoming request.

*

* @param \Illuminate\Http\Request $request

* @param \Closure(\Illuminate\Http\Request):

(\Illuminate\Http\Response|\Illuminate\Http\RedirectResponse) $next

* @return \Illuminate\Http\Response|\Illuminate\Http\RedirectResponse

*/

public function handle($request, Closure $next)

{

if ($request->session()->has('admin')) {

return $next($request);

}

return response()-> view('adminpanel.adminlogin');

//return redirect()->route('adminlogin')->with('message', 'Please

login to access the admin dashboard.');

}

}

Similarly user, vendor

ii) Kernel.php:
'admin.auth' => \App\Http\Middleware\AdminAuthMiddleware::class,

'user.auth' => \App\Http\Middleware\UserAuthMiddleware::class,

'vendor.auth' => \App\Http\Middleware\VendorAuthMiddleware::class,

65

iii)Web.php:
Route::middleware(['admin.auth'])->group(function () {

Route::middleware(['user.auth'])->group(function () {

Route::middleware(['vendor.auth'])->group(function () {

i) This code defines middleware named AdminAuthMiddleware,
UserAuthMiddleware, and VendorAuthMiddleware to manage session
authentication for admin, user, and vendor, respectively. If the respective session
exists, the user proceeds; otherwise, they're redirected to the login page.

ii) In the Kernel.php file, middleware aliases are added to refer to the defined
middleware classes for admin, user, and vendor authentication.

iii) In web.php, routes are grouped with corresponding middleware to enforce
session-based authentication for admin, user, and vendor sections of the
application.

4. Add product:
public function add_product(Request $request){

$data= new products;

$data->product_title= $request['product_title'];

$data->product_description= $request['product_description'];

$data->price =$request['product_price'];

$data->days =$request['product_days'];

$data->discounted_price= $request['product_discount_price'];

$data->quantity= $request['product_quantity'];

$data->catagory_id= $request['product_category'];

$data->apparel_id= $request['product_apparel'];

$data->vendor_name= "Wear Wise";

$image=$request->image;

$imagename= time().'.'.$image->getClientOriginalExtension();

$request->image->move('added_products',$imagename);

$data->image=$imagename;

66

$data-> save();

return redirect()->back()->with('message','Product Added

successfully');

}

The add_product function creates a new product entry with user-input
details, including title, description, price, days, and image. It then saves the
entry and provides a success message.

5. Add product initialize (edit products initialize similar):
public function view_product(){

if (session()->has('admin')) {

$cat= Catagory::all();

$app= Apparel::all();

return

view('adminpanel.add_product',compact('cat'),compact('app'));

}

else {

return redirect('adminlogin')->with('message', 'Please

login to access the admin panel features.');

}

}

This function, named view_product, renders the "add_product" view in the admin
panel. It fetches all categories and apparels from the database. Then, it loads the
"add_product" view, passing along the fetched category and apparel data for
selection.

6. Show products/ View products:
public function show_products(){

$product_data= products::all();

return view('adminpanel.show_products',compact('product_data'));}

67

Fetches all product data and displays it using the 'show_products' view.
7. Delete products:

public function delete_product($product_id){

$data=products::where('product_id', $product_id);

$data->delete();

return redirect()->back()->with('message','Product Deleted

successfully');

}

Deletes a specific product by its ID and provides a success message.

8. Update products:
public function update_product(Request $request, $product_id){

$data=products::find($product_id);

$data->product_title= $request->product_title;

$data->product_description= $request->product_description;

$data->price =$request->product_price;

$data->days =$request->product_days;

$data->discounted_price= $request->product_discount_price;

$data->quantity= $request->product_quantity;

$data->catagory_id= $request->product_category;

$data->apparel_id= $request->product_apparel;

$data->vendor_name= "Wear Wise";

$image=$request->image;

if ($image){

$imagename= time().'.'.$image->getClientOriginalExtension();

$request->image->move('added_products',$imagename);

$data->image=$imagename;

}

$data->save();

68

return redirect()->back()->with('message','Product Updated

successfully');

}

Modifies the product's details based on user input and saves the changes. Also
handles the updating of the product image if a new image is provided. Returns to
the previous page with a success message.

9. View Order & Delete order: (Customer similar)
public function order()

{

$product_data = Order::all();

return view('adminpanel.order', compact('product_data'));

}

public function delete_orders($product_id){

$data=Order::where('id', $product_id);

$data->delete();

return redirect()->back()->with('message','Order Deleted

successfully');

}

Order: Retrieves all orders from the database and displays them in the admin
panel's order page.

Delete orders: Deletes a specific order identified by its ID from the database and
redirects back to the previous page with a success message.

69

10.Show, delete & approve vendors:
public function show_vendors(){

$vendor_data= VendorSignup::all();

return view('adminpanel.show_vendors',compact('vendor_data'));

}

public function delete_vendor($vendor_id){

$data=VendorSignup::where('id', $vendor_id);

$data->delete();

return redirect()->back()->with('message','vendor Deleted

successfully');

}

public function approve_vendor($vendor_id) {

// Retrieve the data from the VendorSignup model

$vendorData = VendorSignup::where('id',

$vendor_id)->first();

if ($vendorData) {

// Create a new instance of the FinalVendors model

$data = new final_vendors;

// Assign the properties from the $vendorData object

$data->name = $vendorData->name;

$data->phone = $vendorData->phone;

$data->username = $vendorData->username;

$data->email = $vendorData->email;

$data->password = $vendorData->password;

$data->buisness_name = $vendorData->buisness_name;

$data->address = $vendorData->address;

$data->buisness_lisence_no =

$vendorData->buisness_lisence_no;

$data->save();

$vendorData->delete();

return redirect()->back()->with('message', 'Vendor

Approved successfully');

70

} else {

// Handle the case when the vendor data with the given

ID is not found

return redirect()->back()->with('error', 'Vendor data

not found');

}

}

Show Vendors: Retrieves all vendor information from the VendorSignup model and
displays it in the admin panel's vendors page.

Delete Vendor: Deletes a specific vendor identified by its ID from the
VendorSignup model and redirects back to the previous page with a success
message.

Approve Vendor: Retrieves the data of a specific vendor by its ID from the
VendorSignup model, creates a new entry in the FinalVendors model using the
retrieved data, and then deletes the vendor's data from the VendorSignup model.
Finally, it redirects back to the previous page with a success message. If the vendor
data is not found, an error message is displayed.

11.View certified vendors & delete them (while deleting the products
posted by them):

public function final_vendors(){

$vendor_data= final_vendors::all();

return

view('adminpanel.final_vendors',compact('vendor_data'));

}

public function delete_f_vendor($vendor_id){

$vendor = final_vendors::find($vendor_id);

$matchingProducts = products::where('vendor_name',

$vendor->buisness_name)->get();

if ($matchingProducts->isNotEmpty()) {

foreach ($matchingProducts as $product) {

$product->delete();

}

}

71

$data=final_vendors ::where('id', $vendor_id);

$data->delete();

return redirect()->back()->with('message','Vendor and the

vendor products deleted');

}

Final Vendors: Retrieves all finalized vendor information from the final_vendors
model and displays it in the admin panel's final vendors page.

Delete Final Vendor: Deletes a specific finalized vendor identified by its ID from
the final_vendors model. If the vendor has associated products in the products
model, those products are also deleted. The function then redirects back to the
previous page with a success message indicating that both the vendor and their
associated products have been deleted.

12.Approve vendor products:
public function approve_product($product_id) {

// Retrieve the data from the productSignup model

$productData = Temp_product::where('id', $product_id)->first();

if ($productData) {

// Create a new instance of the Finalproducts model

$data = new products;

// Assign the properties from the $productData object

$data->product_title = $productData->product_title;

$data->product_description = $productData->product_description;

$data->price = $productData->price;

$data->days = $productData->days;

$data->discounted_price = $productData->discounted_price;

$data->quantity = $productData->quantity;

$data->catagory_id = $productData->catagory_id;

$data->apparel_id = $productData->apparel_id;

$data->vendor_name = $productData->vendor_name;

$data->image = $productData->image;

72

$data->save();

$productData->delete();

return redirect()->back()->with('message', 'product Approved

successfully');

} else {

// Handle the case when the product data with the given ID is not

found

return redirect()->back()->with('error', 'product data not

found');

}

}

Approve Product: This function is used to approve a product that was initially
added by a vendor but was pending approval. It retrieves the product data from the
Temp_product model based on the provided product ID. If the product data exists,
it creates a new instance of the products model, assigns the properties from the
productData object, and then saves the new product to the products model. The
productData entry is then deleted from the Temp_product model. The function
redirects back to the previous page with a success message indicating that the
product has been approved. If the product data with the given ID is not found, it
redirects with an error message.
14. Admin dashboard:

public function index(){

$order_data= Order::all();

$product_data=products::all();

$cus_data=UserSignup::all();

$w_order= Order:: where('vendor_name', 'Wear wise')->get();

return view('adminpanel.admin_dashboard',compact('order_data',

'product_data', 'cus_data','w_order'));

}

Fetches all order, product, and customer data, as well as specific orders from the
'Wear wise' vendor, then sends this data to the 'admin_dashboard' view for display.
Vendor Panel:

73

1. Vendor signup, Login : similar to admin and user except getting approved
by admin.

2. Vendor add product:
public function v_add_product(Request $request){

$data= new Temp_product;

$log = session('vendor');

$row = final_vendors::where('username', $log)->first();

if ($row) {

$vendorName = $row->buisness_name;

}

$data->product_title= $request['product_title'];

$data->product_description= $request['product_description'];

$data->price =$request['product_price'];

$data->days =$request['product_days'];

$data->discounted_price= $request['product_discount_price'];

$data->quantity= $request['product_quantity'];

$data->catagory_id= $request['product_category'];

$data->apparel_id= $request['product_apparel'];

$data->vendor_name= $vendorName;

$image=$request->image;

$imagename= time().'.'.$image->getClientOriginalExtension();

$request->image->move('added_products',$imagename);

$data->image=$imagename;

$data-> save();

return redirect()->back()->with('message','Product Added

successfully');

}

Creates a new temporary product entry by retrieving vendor information from the
session, then populates the entry with product details provided by the vendor. The

74

product image is uploaded and linked, and the entry is saved, followed by a
redirection to the previous page with a success message.

3. Vendor show, edit , delete products:
public function show_vendor_products(){

$product_data= Temp_product::all();

return view('vendor.show_vendor_products',compact('product_data'));

}

public function v_delete_product($product_id){

$data=Temp_product::where('id', $product_id);

$data->delete();

return redirect()->back()->with('message','Product Deleted

successfully');

}

public function v_edit_product($product_id){

$data=Temp_product::where('id', $product_id)->get();

$cata= Catagory::all();

$appa= Apparel::all();

return view('vendor.v_edit_products',compact('data', 'cata', 'appa'));

}

show_vendor_products Function: Retrieves all temporary vendor products and
displays them in the 'show_vendor_products' view.

v_delete_product Function: Deletes a temporary vendor product entry based on the
provided product ID, then redirects back with a success message.

v_edit_product Function: Fetches the details of a specific temporary vendor
product based on the provided product ID, along with all available categories and
apparels. Renders the 'v_edit_products' view with the fetched data and options for
editing.

4. Approved products of vendor:
public function show_approved_vendor_products(){

75

$log = session('vendor');

$row = final_vendors::where('username', $log)->first();

if ($row) {

$vendorName = $row->buisness_name;

}

$product_data= products:: where('vendor_name', $vendorName)->get();

//dd($product_data);

//return view('vendor.test',compact('product_data'));

return

view('vendor.show_approved_vendor_products',compact('product_data'));

}

show_approved_vendor_products Function: Retrieves all products that are
approved and associated with the currently logged-in vendor. It uses the vendor's
username to fetch the business name from the final_vendors table and then
retrieves all products with the matching vendor name from the products table. The
retrieved product data is then displayed in the 'show_approved_vendor_products'
view.

5. Show vendor specific orders & delete:
public function v_orders(){

$log = session('vendor');

$row = final_vendors::where('username', $log)->first();

if ($row) {

$vendorName = $row->buisness_name;

}

$product_data= Order:: where('vendor_name', $vendorName)->get();

return view('vendor.v_orders',compact('product_data'));

}

public function delete_v_orders($product_id){

$data=Order::where('id', $product_id);

$data->delete();

76

return redirect()->back()->with('message','Order Deleted

successfully');

}

}

v_orders Function: Retrieves orders associated with the currently logged-in vendor.
It uses the vendor's username to fetch the business name from the final_vendors
table and then retrieves all orders with the matching vendor name from the Order
table. The retrieved order data is then displayed in the 'v_orders' view.

delete_v_orders Function: Deletes an order based on the provided product ID. It
locates the order using the ID and deletes it from the Order table. Upon successful
deletion, the function redirects back to the previous page with a success message.

77

User Dashboard

1. Add to Cart :

78

The backend development code is a responsive e-commerce template
featuring a cart display with product details, dynamic total price calculation,
and options for continuing shopping or proceeding to checkout. It utilizes
SweetAlert for alerts and offers "Cash On Delivery" and "Pay Using Card"
payment methods. The code ensures a seamless user experience for
managing cart items and initiating orders.

79

2. Order Details :

This backend development code generates a web page displaying an order
history table for this platform. The table includes product details, vendor
information, quantity, days, price, payment and delivery status, order and
return dates, and product image. Users can cancel orders in the 'processing'
delivery status and print PDF receipts. The page features responsive design,
uses SweetAlert for confirmations, and includes navigation and styling
components for a complete user experience.

80

3. Profile view:

The page includes user details such as username, email address, phone
number, name, and address, displayed in a structured form layout. Users can
view their profile information and click on an "Edit Profile" button to make

81

changes. The template also includes a header section with navigation, and it
features responsive design for compatibility with different devices. It utilizes
Bootstrap for styling and includes JavaScript libraries for interactivity and
functionality.

82

4. Profile Edit :

The page allows users to edit and update their profile information. It
includes a form with fields for username, email address (readonly), phone
number, name, and address. Users can input their updated information and
submit the form to update their account details. The template features
responsive design, utilizes Bootstrap for styling, and includes header

83

navigation from the main template. The provided code allows users to
interactively update their profile information.

5. Payment gateway:

84

85

This HTML template creates a payment page for processing credit card payments
using the Stripe API. The page allows users to enter their payment details,
including card number, CVV, expiration date, and name on the card. It calculates
and displays the total amount to be paid. Upon successful payment, a success
message is displayed, and if there are any errors during the payment process, an
error message is shown.

The template is integrated with the Bootstrap CSS framework and includes jQuery
and Stripe's JavaScript library for handling the payment process. The form data is
submitted to the server for processing the payment using the Stripe API. It features
responsive design and includes header navigation from the main template. The
template enables users to securely make payments using their credit cards through
Stripe's payment gateway.

6. Print PDF:

86

This HTML template generates an order details PDF document. It displays
information related to a customer's order, including their name, email, phone
number, and address. Additionally, it provides details about the purchased product,
such as its name, price, and quantity. The template also includes the payment status
of the order and the calculated return date based on the provided number of days.

The template is designed to be used for generating order-related PDFs and is
intended to be dynamically populated with data from the server. It does not include
any styling or formatting beyond the basic structure required to present the order
information in a clear and organized manner.

87

Home:
1. Homepage:

The `HomeController` class manages different views for users and guest
users on a website. In the `index()` method, it retrieves a paginated list of
products (2 products per page) from a database table named "products" and
passes this data to the "home.userpage" view for rendering. This view is
likely intended for authenticated users and displays the products.

In the `index2()` method, it retrieves another paginated list of products (3
products per page) from the same "products" table and sends this data to the
"home.guestuser" view. This view is probably designed for guest users and
presents the products to them.

Both methods utilize the `products` model to fetch data from the database
and make it available to the corresponding views, enabling the display of
products based on the user's status (authenticated or guest) while providing a
paginated browsing experience.

88

2. Header:

The backend development for the given code involves creating and
managing the functionality of a navigation bar in an e-commerce website.
The code utilizes a Laravel framework to dynamically generate navigation
links and dropdown menus based on user roles and actions. The backend
logic includes retrieving and displaying links for pages such as Home,
About, Testimonial, Products, Blog, Contact, Orders, Profile, and Cart. It
also handles user authentication, including user login, user registration,
vendor login, and vendor registration, with corresponding routes and
redirections. The backend development ensures proper routing, user
authentication, session management, and data retrieval to populate the
navigation bar and provide a seamless user experience. Additionally, the
backend supports canceling orders, printing PDFs, and handling logout
actions. The code showcases efficient routing and data management to create
a comprehensive and interactive navigation menu.

3. Header for guest user :

89

The backend development involves implementing the server-side functionality and
data management for the website. This includes handling user authentication,
managing product data, processing orders, and generating dynamic content. User
authentication is implemented to securely manage user logins and registrations,
enabling access to personalized features. The product management system allows
administrators to add, edit, and display products on the website. Orders are
processed and stored in a database, with details like product information,
quantities, and payment status recorded. Additionally, dynamic content generation
is achieved through server-side scripting, enabling the display of user-specific data
and real-time updates. The backend development ensures smooth data flow, secure
interactions, and efficient management of website operations, contributing to a
seamless user experience.

90

4. Product :

91

The backend development for the product section involves handling product
data and user interactions. The server fetches product information from a
database and dynamically generates product listings on the website. The
search functionality is implemented using a form that sends search queries to
the server, enabling users to search for specific products. Each product is
displayed with its details, including title, vendor name, image, price, and
discount (if applicable). Users can select quantities and rental days for
products and add them to the cart. The "Add to Cart" functionality is
achieved through a form submission that updates the user's cart in the
backend. Pagination is implemented to display a limited number of products
per page and allow users to navigate through the product list. The backend
processes these user interactions, retrieves and updates product data, and
manages cart items, enhancing the user experience and providing a seamless
product browsing and selection process.

92

5. Product-Details:

93

The backend development for this product detail page involves retrieving
and displaying dynamic product information from a database based on the
product ID. It handles logic to show discounted prices if available, processes
user input for adding items to the cart, and manages cart functionality.
Additionally, it includes common header and footer templates for a
consistent layout. The backend ensures data accuracy, security, and smooth
user interactions for an engaging and functional shopping experience.

94

6. Footer :

The backend part of this footer involves rendering dynamic content such as
the company's address, telephone number, and email address. It also
generates the menu items for navigation, both for the main menu and the
account-related links. Additionally, the backend handles the newsletter
subscription functionality, capturing user email input and managing the
subscription process. Overall, the backend ensures that the footer's
information and functionality are dynamically generated and responsive to
user interactions.

95

Technology (Framework, Languages)

Technology Used in Implementation

The development of Wearwise, the Online Clothing Rental Service Website,
leveraged a comprehensive technology stack, with Laravel as the core framework,
to build a robust and dynamic platform tailored to meet user needs.

Framework:

Laravel Framework: Laravel, a powerful and popular PHP web application
framework, formed the foundation of the project. It provided a structured and
efficient environment for developing feature-rich web applications. Leveraging
Laravel's elegant syntax, built-in security features, and extensive ecosystem,
Wearwise was able to deliver a scalable and maintainable solution.
Client-Side Technologies:

HTML (Hyper Text Markup Language): HTML was utilized to create the structure
of web pages, defining content elements and ensuring semantic consistency across
the site.

CSS (Cascading Style Sheets): CSS3 empowered the platform's visual
presentation, enabling responsive design, layouts, and consistent styling.

Bootstrap (Front-end Framework): Bootstrap streamlined front-end development,
offering pre-designed components, grid systems, and responsive features that
ensured a seamless user experience on various devices.

Server-Side Technologies:

PHP: As a server-side scripting language, PHP powered dynamic content
generation, data interaction, and database management, ensuring a robust back-end
for the website.

96

SQL (Structured Query Language): SQL queries, managed through Laravel's
Eloquent ORM, handled data transactions, supporting essential functions like user
profiles, product information, and order management.

Implementation Tools:

Visual Studio Code (VS Code): VS Code provided a feature-rich source code
editor with extensions and version control integration, enhancing developer
productivity and code quality.

XAMPP (Cross-Platform Web Server Solution Stack): XAMPP created a local
development environment, bundling components such as the Apache HTTP Server,
MariaDB database, PHP interpreter, and Perl, facilitating testing and deployment.

Apache HTTP Server: Apache served as the web server software, handling HTTP
requests and hosting the website, providing a reliable foundation for the platform.

MySQL (Relational Database Management System): MySQL efficiently manages
structured data, ensuring data integrity and supporting essential features like stored
procedures and query optimization.

The combination of Laravel as the core framework, alongside the aforementioned
technologies and tools, enabled Wearwise to successfully implement a
sophisticated online platform, delivering a user-friendly experience while
leveraging the power of modern web development techniques. The adoption of
Laravel, known for its flexibility and developer-friendly features, played a pivotal
role in achieving the project's goals.

97

Github Repository

Link: https://github.com/shihabmuhtasim/wearwise (Accessible to our lab faculties
only)

Individual Contribution

ID Name Contribution

21301610 Shihab Muhtasim Module 1: Admin Panel
1. Login , registration & logout
2. session management on all pages
3. Add product
4. View product , Edit product & Delete product
5. Add, Edit, Delete & View Category
6. Add, Edit, Delete & View Apparel
7. Admin sidebar, header
8. Dashboard features design & show data from

database
9. View orders, delete orders

Module 2: Home /Shop
1. User login, logout
2. User register
3. Session management on all pages

Module 4: Vendor management:
1. Vendor register - (approval from admin)
2. Vendor login, logout & session management
3. Post product for approval
4. View pending products, edit those, and delete

those
5. View approved products, delete those
6. View orders of vendor

https://github.com/shihabmuhtasim/wearwise

98

7. Vendor Dashboard features design & show data
from database

8. sidebar, navbar
Admin panel:

9. View Vendor account requests– approve, delete.
10.View certified vendors & remove those vendors.
11.Delete products of removed vendors.
12.View Vendor product post requests & approve /

reject- (approved products go to main products
table)

21301274 Nusaiba Alam Module 2: Home /Shop
1. Homepage products display
2. Products page- description, price, days, vendor

name display
3. Sort products by pagination
4. Search products by keywords
5. Cart- update, delete, continue shopping

Module 3 User dashboard:
1. View profile
2. Online Payment gateway using card

implementation
3. order confirmation
4. Edit profile
5. View orders of user
6. Cart- checkout
7. Cancel order from order page
8. Download pdf of order details

20301326 Sartaj Emon Prattoy Module 1: Admin Panel
1. Admin panel view customer
2. Delete Customer

99

3. View Order list

Module 3: User Dashboard
4. Product review: Comment
5. Reply.

