-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsearch_mixed_2stage.py
322 lines (272 loc) · 15.2 KB
/
search_mixed_2stage.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
# -*- coding: utf-8 -*-
# @Date : 2019-09-25
# @Author : Xinyu Gong (xy_gong@tamu.edu)
# @Link : None
# @Version : 0.0
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import random
import cfg
from functions import train_shared_mixed, train_controller, get_topk_arch_hidden
from utils.utils import set_log_dir, save_checkpoint, create_logger, RunningStats
# from utils.inception_score import _init_inception
# from utils.fid_score import create_inception_graph, check_or_download_inception
from operation import ImageFolder, InfiniteSamplerWrapper
from torch.utils.data.dataloader import DataLoader
from torchvision import transforms
from models_search.shared_gan_2stage import Generator,Discriminator
from models_search.controller import ControllerSkipMore, ControllerNoAttn
from models import CLHead
import torch
import os
import torch.nn as nn
from tensorboardX import SummaryWriter
from torchvision import utils as vutils
from tqdm import tqdm
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
def create_ctrler_skip(args, weights_init):
controller = ControllerSkipMore(args=args).cuda()
controller.apply(weights_init)
ctrl_optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, controller.parameters()),
args.ctrl_lr, (args.beta1, args.beta2))
return controller, ctrl_optimizer
def create_ctrler_norm(args, weights_init):
controller = ControllerNoAttn(args=args).cuda()
controller.apply(weights_init)
ctrl_optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, controller.parameters()),
args.ctrl_lr, (args.beta1, args.beta2))
return controller, ctrl_optimizer
def create_shared_gan(args, weights_init, cur_stage=1):
gen_net = Generator(ngf=args.gf_dim, nz=args.latent_dim, nc=3, im_size=args.im_size, cur_stage=cur_stage).cuda()
dis_net = Discriminator(ndf=args.df_dim, nc=3, im_size=args.im_size, cur_stage=cur_stage).cuda()
gen_net.apply(weights_init)
dis_net.apply(weights_init)
gen_optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, gen_net.parameters()),
args.g_lr, (args.beta1, args.beta2))
dis_optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, dis_net.parameters()),
args.d_lr, (args.beta1, args.beta2))
return gen_net, dis_net, gen_optimizer, dis_optimizer
def create_clhead(args, weights_init):
clhead_big = CLHead(inplanes=args.df_dim * 8)
clhead_big.apply(weights_init)
clhead_small = CLHead(inplanes=args.df_dim * 4)
clhead_small.apply(weights_init)
clhead_big.cuda()
clhead_small.cuda()
optimizerCL_big = torch.optim.Adam(clhead_big.mlp.parameters(), args.g_lr, (args.beta1, args.beta2))
optimizerCL_small = torch.optim.Adam(clhead_small.mlp.parameters(), args.g_lr, (args.beta1, args.beta2))
return clhead_big, clhead_small, optimizerCL_big, optimizerCL_small
def main():
args = cfg.parse_args()
torch.cuda.manual_seed(args.random_seed)
# # set tf env
# _init_inception()
# inception_path = check_or_download_inception(None)
# create_inception_graph(inception_path)
# weight init
# weight init
def weights_init(m):
classname = m.__class__.__name__
if classname.find('Conv2d') != -1:
if args.init_type == 'normal':
nn.init.normal_(m.weight.data, 0.0, 0.02)
elif args.init_type == 'orth':
nn.init.orthogonal_(m.weight.data)
elif args.init_type == 'xavier_uniform':
nn.init.xavier_uniform(m.weight.data, 1.)
else:
raise NotImplementedError('{} unknown inital type'.format(args.init_type))
elif classname.find('BatchNorm2d') != -1:
nn.init.normal_(m.weight.data, 1.0, 0.02)
nn.init.constant_(m.bias.data, 0.0)
change_step = [i*args.change_epoch for i in range(1, (args.max_search_iter // args.change_epoch) + 1)]
bk_dic = {}
datasets_dic = {0: './data/few-shot-images/100-shot-grumpy_cat',
1: './data/few-shot-images/100-shot-obama/img',
2: './data/few-shot-images/100-shot-panda',
3: './data/few-shot-images/AnimalFace-cat/img',
4: './data/few-shot-images/AnimalFace-dog/img',
5: './data/few-shot-images/anime-face/img',
6: './data/few-shot-images/art-painting/img',
7: './data/few-shot-images/fauvism-still-life/img',
8: './data/few-shot-images/flat-colored/patterns',
9: './data/few-shot-images/moongate/img',
10: './data/few-shot-images/pokemon/img',
11: './data/few-shot-images/shells/img',
12: './data/few-shot-images/skulls/img',
}
# data_idex = random.sample(datasets_dic.keys(),k=1)
# if args.data_root:
# data_root = args.data_root
# else:
# data_root = datasets_dic[int(data_idex[0])]
# datasets_dic.pop(data_idex[0])
# initial
start_search_iter = 0
# set writer
if args.load_path:
print(f'=> resuming from {args.load_path}')
assert os.path.exists(args.load_path)
checkpoint_file = os.path.join(args.load_path, 'Model', 'checkpoint.pth')
assert os.path.exists(checkpoint_file)
checkpoint = torch.load(checkpoint_file)
# set controller && its optimizer
cur_stage = checkpoint['cur_stage']
gen_net, dis_net, gen_optimizer, dis_optimizer = create_shared_gan(args, weights_init, cur_stage)
clhead_big, clhead_small, optimizerCL_big, optimizerCL_small = create_clhead(args, weights_init)
controller_skip, ctrl_skip_optimizer = create_ctrler_skip(args, weights_init)
controller_norm, ctrl_norm_optimizer = create_ctrler_norm(args, weights_init)
start_search_iter = checkpoint['search_iter']
gen_net.load_state_dict(checkpoint['gen_state_dict'])
dis_net.load_state_dict(checkpoint['dis_state_dict'])
clhead_big.load_state_dict(checkpoint['clhead_big'])
clhead_small.load_state_dict(checkpoint['clhead_samll'])
controller_skip.load_state_dict(checkpoint['ctrl_skip_state_dict'])
controller_norm.load_state_dict(checkpoint['ctrl_attn_state_dict'])
gen_optimizer.load_state_dict(checkpoint['gen_optimizer'])
dis_optimizer.load_state_dict(checkpoint['dis_optimizer'])
ctrl_skip_optimizer.load_state_dict(checkpoint['ctrl_skip_optimizer'])
ctrl_norm_optimizer.load_state_dict(checkpoint['ctrl_attn_optimizer'])
optimizerCL_big.load_state_dict(checkpoint['cloptimizer_big'])
optimizerCL_small.load_state_dict(checkpoint['cloptimizer_small'])
top_skip_archs = checkpoint['top_skip_archs']
data_root = checkpoint['data_root']
datasets_dic = checkpoint['data_dic']
args.path_helper = checkpoint['path_helper']
logger = create_logger(args.path_helper['log_path'])
logger.info(f'=> loaded checkpoint {checkpoint_file} (search iteration {start_search_iter})')
else:
# create new log dir
assert args.exp_name
args.path_helper = set_log_dir('logs', args.exp_name)
logger = create_logger(args.path_helper['log_path'])
data_idex = random.sample(datasets_dic.keys(), k=1)
data_root = datasets_dic[int(data_idex[0])]
datasets_dic.pop(data_idex[0])
top_skip_archs = None
cur_stage = 1
# set controller && its optimizer
gen_net, dis_net, gen_optimizer, dis_optimizer = create_shared_gan(args, weights_init, cur_stage)
controller_skip, ctrl_skip_optimizer = create_ctrler_skip(args, weights_init)
controller_norm, ctrl_norm_optimizer = create_ctrler_norm(args, weights_init)
# top_skip_archs = [torch.tensor([0, 0, 0, 1, 2]), torch.tensor([0, 0, 0, 0, 1]), torch.tensor([0, 0, 0, 0, 1]), torch.tensor([0, 0, 0, 0, 2]), torch.tensor([0, 0, 0, 0, 1])]
# set up data_loader
# data_root = './data/few-shot-images/moongate/img'
logger.info(f"<Initial Dataset is: {data_root[22:]}>")
transform_list = [
transforms.Resize((int(args.im_size), int(args.im_size))),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
]
trans = transforms.Compose(transform_list)
if 'lmdb' in data_root:
from operation import MultiResolutionDataset
dataset = MultiResolutionDataset(data_root, trans, 1024)
else:
dataset = ImageFolder(root=data_root, transform=trans)
dataloader = iter(DataLoader(dataset, batch_size=args.batch_size, shuffle=False,
sampler=InfiniteSamplerWrapper(dataset), num_workers=args.dataloader_workers,
pin_memory=True))
loader = DataLoader(dataset, batch_size=64, num_workers=6)
dist = './fid_buffer/demo/'
os.system('rm -f {}*'.format(dist))
for i, imgs in enumerate(loader):
for j, img in enumerate(imgs):
vutils.save_image(img.add(1).mul(0.5),
os.path.join(dist,
'%d.png' % (i * 64 + j))) # , normalize=True, range=(-1,1))
# im_nums = min(len(dataset), args.n_sample)
im_nums = args.n_sample
logger.info(args)
writer_dict = {
'writer': SummaryWriter(args.path_helper['log_path']),
'controller_steps': start_search_iter * args.ctrl_step
}
g_loss_history = RunningStats(args.dynamic_reset_window)
d_loss_history = RunningStats(args.dynamic_reset_window)
# train loop
for search_iter in tqdm(range(int(start_search_iter), int(args.max_search_iter)), desc='search progress'):
if search_iter == args.grow_step:
logger.info(f"<start search stage2>")
cur_stage = 2
top_skip_archs = get_topk_arch_hidden(args, controller_skip, gen_net, dist)
logger.info(f"discovered archs by fid: {top_skip_archs}")
if search_iter in change_step:
data_idex = random.sample(datasets_dic.keys(), 1)
data_root = datasets_dic[int(data_idex[0])]
datasets_dic.pop(data_idex[0])
logger.info(f"< change dataset of selected dataset {data_root[22:]}>")
if 'lmdb' in data_root:
from operation import MultiResolutionDataset
dataset = MultiResolutionDataset(data_root, trans, 1024)
else:
dataset = ImageFolder(root=data_root, transform=trans)
# im_nums = min(len(dataset),args.n_sample)
dataloader = iter(DataLoader(dataset, batch_size=args.batch_size, shuffle=False,
sampler=InfiniteSamplerWrapper(dataset),
num_workers=args.dataloader_workers,
pin_memory=True))
loader = DataLoader(dataset, batch_size=64, num_workers=6)
os.system('rm -f {}*'.format(dist))
for i, imgs in enumerate(loader):
for j, img in enumerate(imgs):
vutils.save_image(img.add(1).mul(0.5),
os.path.join(dist,
'%d.png' % (i * 64 + j))) # , normalize=True, range=(-1,1))
del gen_net, dis_net, gen_optimizer, dis_optimizer, clhead_big, clhead_small, optimizerCL_big, optimizerCL_small
g_loss_history.clear()
d_loss_history.clear()
gen_net, dis_net, gen_optimizer, dis_optimizer = create_shared_gan(args, weights_init,
cur_stage=cur_stage)
clhead_big, clhead_small, optimizerCL_big, optimizerCL_small = create_clhead(args, weights_init)
logger.info(f"<start search iteration {search_iter}>")
# del gen_net,dis_net,gen_optimizer,dis_optimizer,clhead_big, clhead_small, optimizerCL_big, optimizerCL_small
# g_loss_history.clear()
# d_loss_history.clear()
# gen_net, dis_net, gen_optimizer, dis_optimizer = create_shared_gan(args, weights_init, cur_stage=cur_stage)
# clhead_big, clhead_small, optimizerCL_big, optimizerCL_small = create_clhead(args, weights_init)
if search_iter >= args.grow_step:
dynamic_reset = train_shared_mixed(args, gen_net, dis_net, clhead_big, clhead_small, g_loss_history,
d_loss_history, controller_norm, gen_optimizer,
dis_optimizer, optimizerCL_big, optimizerCL_small, dataloader, top_skip_archs=top_skip_archs, cur_stage=cur_stage)
train_controller(args, controller_norm, ctrl_norm_optimizer, gen_net, im_nums, dist, writer_dict, top_skip_archs=top_skip_archs, cur_stage=cur_stage)
else:
dynamic_reset = train_shared_mixed(args, gen_net, dis_net, clhead_big, clhead_small, g_loss_history,
d_loss_history, controller_skip, gen_optimizer,
dis_optimizer, optimizerCL_big, optimizerCL_small, dataloader, top_skip_archs=top_skip_archs, cur_stage=cur_stage)
train_controller(args, controller_skip, ctrl_skip_optimizer, gen_net, im_nums, dist, writer_dict, top_skip_archs=top_skip_archs, cur_stage=cur_stage)
if dynamic_reset:
logger.info('re-initialize share GAN')
del gen_net, dis_net, gen_optimizer, dis_optimizer,clhead_big, clhead_small, optimizerCL_big, optimizerCL_small
gen_net, dis_net, gen_optimizer, dis_optimizer = create_shared_gan(args, weights_init, cur_stage=cur_stage)
clhead_big, clhead_small, optimizerCL_big, optimizerCL_small = create_clhead(args, weights_init)
save_checkpoint({
'search_iter': search_iter + 1,
'gen_model': args.gen_model,
'dis_model': args.dis_model,
'controller': args.controller,
'gen_state_dict': gen_net.state_dict(),
'dis_state_dict': dis_net.state_dict(),
'ctrl_skip_state_dict': controller_skip.state_dict(),
'ctrl_attn_state_dict': controller_norm.state_dict(),
'clhead_big': clhead_big.state_dict(),
'clhead_samll': clhead_small.state_dict(),
'gen_optimizer': gen_optimizer.state_dict(),
'dis_optimizer': dis_optimizer.state_dict(),
'cloptimizer_big': optimizerCL_big.state_dict(),
'cloptimizer_small': optimizerCL_small.state_dict(),
'ctrl_skip_optimizer': ctrl_skip_optimizer.state_dict(),
'ctrl_attn_optimizer': ctrl_norm_optimizer.state_dict(),
'cur_stage': cur_stage,
'top_skip_archs': top_skip_archs,
'data_root': data_root,
'data_dic': datasets_dic,
'path_helper': args.path_helper
}, False, args.path_helper['ckpt_path'])
final_archs_fid = get_topk_arch_hidden(args, controller_norm, gen_net, dist, top_skip_archs=top_skip_archs)
logger.info(f"discovered archs by fid: {final_archs_fid}")
if __name__ == '__main__':
main()