-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathevaluateDetection.m
279 lines (208 loc) · 7.44 KB
/
evaluateDetection.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
function detResults=evaluateDetection(seqmap,resDir,dataDir, detector)
%% evaluate detections using P. Dollar's script
if nargin<4, detector='unknown'; end
chlname = 'MOT17Det';
[~,f,~]=fileparts(seqmap); f=strsplit(f,'-');
splitStr = f{2};
splitStrLong = 'unknown split';
if strcmpi(splitStr,'test'), splitStrLong='Test Set';
elseif strcmpi(splitStr,'train'), splitStrLong='Training Set';
end
addpath(genpath('.'));
% read sequence map
seqmapFile=fullfile('seqmaps',seqmap);
allSeq = parseSequences2(seqmapFile);
fprintf('Challenge: %s\n',chlname);
fprintf('Set: %s\n',splitStrLong);
fprintf('Sequences: \n');
disp(allSeq')
gtInfo=[];
gtInfo.X=[];
allFgt=zeros(1,length(allSeq));
cls = [2,7,8,12]; %% ambiguous classes
minvis = 0.5;
ref=0:.025:1;
ref=0:.1:1;
showEachRef=1;
% Find out the length of each sequence
% and concatenate ground truth
gtInfoSingle=[];
gtAll={};
detInfoSingle=[];
detAll={};
seqCnt=0;
allFrCnt=0;
evalMethod=1;
gtAllMatrix=zeros(0,6);
detAllMatrix=zeros(0,7);
for s=allSeq
seqCnt=seqCnt+1;
seqName = char(s);
[seqName, seqFolder, imgFolder, imgExt, F, dirImages] ...
= getSeqInfoFromFile(seqName, dataDir);
assert(isdir(seqFolder),'Sequence folder %s missing',seqFolder);
gtFile = fullfile(dataDir,seqName,'gt','gt.txt');
gtRaw = dlmread(gtFile);
% if something (a result) is missing, we cannot evaluate this tracker
resFile = fullfile(resDir,[seqName '.txt']);
if ~exist(resFile,'file')
fprintf('WARNING: result for %s not available: %s\n',seqName, resFile);
evalMethod=0;
continue;
end
% if MOT16, preprocess (clean)
if cleanRequired(seqFolder)
resFile = preprocessResult(resFile, seqName, dataDir, 1, minvis);
end
detRaw=dlmread(resFile);
%
gtOne= {};
detOne = {};
for t=1:F
allFrCnt=allFrCnt+1;
% keep pedestrians only and vis >= minvis
exgt=find(gtRaw(:,1)==t & gtRaw(:,8)==1 & gtRaw(:,9)>=minvis);
gtAll{allFrCnt}=[gtRaw(exgt,3:6) zeros(length(exgt),1)];
gtOne{t}=[gtRaw(exgt,3:6) zeros(length(exgt),1)];
ng = length(exgt);
oneFrame=[allFrCnt*ones(ng,1), (1:ng)', gtRaw(exgt,3:6)]; % set IDs to 1..ng
gtAllMatrix=[gtAllMatrix; oneFrame];
exdet=find(detRaw(:,1)==t);
bbox=detRaw(exdet,3:7);
detAll{allFrCnt}=bbox;
detOne{t}=bbox;
ng = length(exdet);
oneFrame=[allFrCnt*ones(ng,1), (1:ng)', detRaw(exdet,3:7)]; % set IDs to 1..ng
detAllMatrix=[detAllMatrix; oneFrame];
end
allFgt(seqCnt) = F;
gtInfoSingle(seqCnt).gt=gtOne;
gtInfoSingle(seqCnt).gtMat=gtRaw(find(gtRaw(:,8)==1 & gtRaw(:,9)>=minvis),1:6);
detInfoSingle(seqCnt).det = detOne;
detInfoSingle(seqCnt).detMat = detRaw;
end
detResults=[];
mcnt=1;
try
% detector = char(m);
fprintf('Evaluating %s\n',detector);
detResults(mcnt).detector = detector;
% evalMethod=1;
seqCnt=0;
detectorRuntime=0;
% iterate over each sequence
for s=allSeq
seqCnt=seqCnt+1;
seqName = char(s);
fprintf('\t... %s\n',seqName);
gt0=gtInfoSingle(seqCnt).gt;
dt0=detInfoSingle(seqCnt).det;
[gt,dt]=bbGt('evalRes',gt0,dt0);
[rc,pr,scores,refprcn] = bbGt('compRoc',gt,dt,0,ref);
% rc
% pr
% score
% refprcn
AP = mean(refprcn);
% pause
detResults(mcnt).mets(seqCnt).rc=rc;
detResults(mcnt).mets(seqCnt).pr=pr;
detResults(mcnt).mets(seqCnt).ref=refprcn;
detResults(mcnt).mets(seqCnt).AP=AP;
detResults(mcnt).mets(seqCnt).name=seqName;
gtRawPed = gtInfoSingle(seqCnt).gtMat;
detRawPed = detInfoSingle(seqCnt).detMat;
[detMets, detMetsInfo, detMetsAddInfo]=CLEAR_MOD_HUN(gtRawPed,detRawPed);
% printMetrics(detMets);
detResults(mcnt).mets(seqCnt).detMets = detMets;
detResults(mcnt).mets(seqCnt).detMetsInfo = detMetsInfo;
detResults(mcnt).mets(seqCnt).detMetsAddInfo = detMetsAddInfo;
refprstr = '';
for r=1:length(refprcn)
refprstr=[refprstr,sprintf('%.4f',refprcn(r))];
if r<length(refprcn), refprstr=[refprstr,',']; end
end
end
if evalMethod
fprintf('Ok, results are valid. EVALUATING...\n');
gt0=gtAll;
dt0=detAll;
[gt,dt]=bbGt('evalRes',gt0,dt0);
[rc,pr,scores,refprcn] = bbGt('compRoc',gt,dt,0,ref);
[detMetsAll, detMetsInfo, detMetsAddInfo]=CLEAR_MOD_HUN(gtAllMatrix,detAllMatrix);
AP=mean(refprcn);
detResults(mcnt).rc=rc;
detResults(mcnt).pr=pr;
detResults(mcnt).ref=refprcn;
detResults(mcnt).AP=AP;
detResults(mcnt).detMets=detMetsAll;
fprintf('*** Dataset: %s ***\n',chlname);
fprintf('Recall: ')
for r=1:showEachRef:length(ref)
fprintf('%6.3f',ref(r));
end
fprintf('\n')
fprintf('Precision: ')
for r=1:showEachRef:length(ref)
fprintf('%6.3f',refprcn(r));
end
fprintf('\n');
fprintf('Average Precision: %.4f\n',AP);
printMetrics(detMetsAll);
fprintf('\n\nHere are the per-sequence evaluations:\n\n');
seqCnt = 0;
mcnt=1;
for s=allSeq
seqCnt=seqCnt+1;
seqName = char(s);
refprcn = detResults(mcnt).mets(seqCnt).ref;
AP = detResults(mcnt).mets(seqCnt).AP;
detMets = detResults(mcnt).mets(seqCnt).detMets;
fprintf('\t... %s\n',seqName);
fprintf('Recall: ')
for r=1:showEachRef:length(ref)
fprintf('%6.3f',ref(r));
end
fprintf('\n')
fprintf('Precision: ')
for r=1:showEachRef:length(ref)
fprintf('%6.3f',refprcn(r));
end
fprintf('\n');
fprintf('Average Precision: %.4f\n',AP);
printMetrics(detMets);
fprintf('\n');
end
fprintf('\n\n');
AP=detResults(mcnt).AP;
refprcn=detResults(mcnt).ref;
evalFile = fullfile(resDir, 'eval_dets.txt');
dlmwrite(evalFile,AP);
evalDetailsFile = fullfile(resDir, 'eval_dets_details.txt');
dlmwrite(evalDetailsFile,[rc,pr]);
evalRefFile = fullfile(resDir, 'eval_dets_ref.txt');
dlmwrite(evalRefFile,[ref',refprcn']);
evalMatFile = fullfile(resDir, 'eval_dets.mat');
save(evalMatFile,'detResults')
% plot
fh=figure;
figFile = fullfile(resDir, sprintf('rcpr-%s',splitStr));
clf; grid on;
plot(rc,pr,'linewidth',3);
xlabel('Recall');
ylabel('Precision');
axis([0,1,0,1]);
legend(sprintf('%s (AP: %.2f)',detector,AP));
titleStr = sprintf('%s - %s',chlname,splitStrLong);
title(titleStr);
saveas(fh,[figFile,'.png']);
% saveas(fh,[figFile,'.pdf']);
close(fh);
else
fprintf('WARNING: %s cannot be evaluated\n',tracker);
% update mysql, delete row
end
catch err
fprintf('WARNING: %s cannot be evaluated: %s\n',detector,err.message);
getReport(err)
end