-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path1-data.py
executable file
·65 lines (52 loc) · 2.24 KB
/
1-data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
#!/usr/bin/env python3
import numpy as np
#set up so the data can be replicated
np.random.seed(0)
#function generates points on a sin wave of given frequency and phase
def sin_wave(time, frequency, phase):
return np.sin(2 * np.pi * frequency * time + phase)
#function generates random sin waves with added noise
def generate_true_data():
time = np.linspace(0, 1, num = 50000)
#frequencies based on the range of CWs
frequency = np.random.uniform(low=20, high=1000)
phase = np.random.uniform(low=0, high=np.pi*2)
data = sin_wave(time, frequency, phase)
#add gausian noise
data_noisy = data + np.random.normal(0, 1, data.shape)
return data_noisy
#function generates random gaussian noise
def generate_false_data():
data = np.zeros(50000, dtype=float)
data_noisy = data + np.random.normal(0, 1, data.shape)
return data_noisy
training_data_array = np.array([generate_true_data()])
training_label_array = np.array([1])
#generate training data
for x in range(1600):
data_type = np.random.randint(0,2)
if data_type == 1:
training_data_array = np.vstack((np.array([generate_true_data()]), training_data_array))
training_label_array = np.vstack((np.array([1]), training_label_array))
if data_type == 0:
training_data_array = np.vstack((np.array([generate_false_data()]), training_data_array))
training_label_array = np.vstack((np.array([0]), training_label_array))
x+=1
#save training data
np.save("training-1-data.npy", training_data_array)
np.save("training-1-labels.npy", training_label_array)
testing_data_array = np.array([generate_true_data()])
testing_label_array = np.array([1])
#generate testing data
for x in range(400):
data_type = np.random.randint(0,2)
if data_type == 1:
testing_data_array = np.vstack((np.array([generate_true_data()]), testing_data_array))
testing_label_array = np.vstack((np.array([1]), testing_label_array))
if data_type == 0:
testing_data_array = np.vstack((np.array([generate_false_data()]), testing_data_array))
testing_label_array = np.vstack((np.array([0]), testing_label_array))
x+=1
#save testing data
np.save("testing-1-data.npy", testing_data_array)
np.save("testing-1-labels.npy", testing_label_array)