-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
254 lines (198 loc) · 8.29 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
import torch
import torch.nn as nn
import torch.nn.functional as F
__all__ = ['Seq2SeqTransformer','config']
config = {
'dim': 128,
'n_heads': 4,
'attn_dropout': 0.1,
'mlp_dropout': 0.1,
'depth': 8,
'vocab_size': 30000,
'max_len': 128,
'pad_token_id': 1
}
class RMSNorm(nn.Module):
def __init__(self, d, p=-1., eps=1e-8, bias=False):
"""
Root Mean Square Layer Normalization
src: https://github.com/bzhangGo/rmsnorm/blob/master/rmsnorm_torch.py
:param d: model size
:param p: partial RMSNorm, valid value [0, 1], default -1.0 (disabled)
:param eps: epsilon value, default 1e-8
:param bias: whether use bias term for RMSNorm, disabled by
default because RMSNorm doesn't enforce re-centering invariance.
"""
super(RMSNorm, self).__init__()
self.eps = eps
self.d = d
self.p = p
self.bias = bias
self.scale = nn.Parameter(torch.ones(d))
self.register_parameter("scale", self.scale)
if self.bias:
self.offset = nn.Parameter(torch.zeros(d))
self.register_parameter("offset", self.offset)
def forward(self, x):
if self.p < 0. or self.p > 1.:
norm_x = x.norm(2, dim=-1, keepdim=True)
d_x = self.d
else:
partial_size = int(self.d * self.p)
partial_x, _ = torch.split(x, [partial_size, self.d - partial_size], dim=-1)
norm_x = partial_x.norm(2, dim=-1, keepdim=True)
d_x = partial_size
rms_x = norm_x * d_x ** (-1. / 2)
x_normed = x / (rms_x + self.eps)
if self.bias:
return self.scale * x_normed + self.offset
return self.scale * x_normed
class MultiheadAttention(nn.Module):
def __init__(self, dim, n_heads, dropout=0.):
super().__init__()
self.dim = dim
self.n_heads = n_heads
assert dim % n_heads == 0, 'dim should be div by n_heads'
self.head_dim = self.dim // self.n_heads
self.q = nn.Linear(dim,dim,bias=False)
self.k = nn.Linear(dim,dim,bias=False)
self.v = nn.Linear(dim,dim,bias=False)
self.attn_dropout = nn.Dropout(dropout)
self.scale = self.head_dim ** -0.5
self.out_proj = nn.Linear(dim,dim,bias=False)
def forward(self,q,k,v,mask=None):
batch,t,c = q.shape
q = self.q(q)
k = self.k(k)
v = self.v(v)
q = q.view(batch,q.size(1),self.n_heads,self.head_dim).permute(0,2,1,3)
k = k.view(batch,k.size(1),self.n_heads,self.head_dim).permute(0,2,1,3)
v = v.view(batch,v.size(1),self.n_heads,self.head_dim).permute(0,2,1,3)
qkT = torch.matmul(q,k.transpose(-1,-2)) * self.scale
qkT = self.attn_dropout(qkT)
if mask is not None:
mask = mask.to(dtype=qkT.dtype,device=qkT.device)
a,b = qkT.size(-2), qkT.size(-1)
qkT = qkT.masked_fill(mask[:,:,:a,:b]==0,float('-inf'))
qkT = F.softmax(qkT,dim=-1)
attn = torch.matmul(qkT,v)
attn = attn.permute(0,2,1,3).contiguous().view(batch,t,c)
out = self.out_proj(attn)
return out
class FeedForward(nn.Module):
def __init__(self,dim,dropout=0.):
super().__init__()
self.feed_forward = nn.Sequential(
nn.Linear(dim,dim*4,bias=False),
nn.Dropout(dropout),
nn.GELU(),
nn.Linear(dim*4,dim,bias=False)
)
def forward(self, x):
return self.feed_forward(x)
class EncoderBlock(nn.Module):
def __init__(self, dim, n_heads, attn_dropout=0., mlp_dropout=0.):
super().__init__()
self.attn = MultiheadAttention(dim,n_heads,attn_dropout)
self.ffd = FeedForward(dim,mlp_dropout)
self.ln_1 = RMSNorm(dim)
self.ln_2 = RMSNorm(dim)
def forward(self,x,mask=None):
x = self.ln_1(x)
x = x + self.attn(x,x,x,mask)
x = self.ln_2(x)
x = x + self.ffd(x)
return x
class DecoderBlock(nn.Module):
def __init__(self, dim, n_heads, attn_dropout=0., mlp_dropout=0.):
super().__init__()
self.self_attn = MultiheadAttention(dim,n_heads,attn_dropout)
self.cross_attn = MultiheadAttention(dim,n_heads,attn_dropout)
self.ln_1 = RMSNorm(dim)
self.ln_2 = RMSNorm(dim)
self.ln_3 = RMSNorm(dim)
self.ffd = FeedForward(dim,mlp_dropout)
def forward(self, x, enc_out, src_mask, tgt_mask):
x = self.ln_1(x)
x = x + self.self_attn(x,x,x,tgt_mask)
x = self.ln_2(x)
x = x + self.cross_attn(x,enc_out,enc_out,src_mask) # decoder: q, encoder: k,v
x = self.ln_3(x)
x = x + self.ffd(x)
return x
class Embedding(nn.Module):
def __init__(self,vocab_size,max_len,dim):
super().__init__()
self.max_len = max_len
self.class_embedding = nn.Embedding(vocab_size,dim)
self.pos_embedding = nn.Embedding(max_len,dim)
def forward(self,x):
x = self.class_embedding(x)
pos = torch.arange(0,x.size(1),device=x.device)
x = x + self.pos_embedding(pos)
return x
class Seq2SeqTransformer(nn.Module):
def __init__(self, config):
super().__init__()
self.embedding = Embedding(config['vocab_size'],config['max_len'],config['dim'])
self.depth = config['depth']
self.encoders = nn.ModuleList([
EncoderBlock(
dim=config['dim'],
n_heads=config['n_heads'],
attn_dropout=config['attn_dropout'],
mlp_dropout=config['mlp_dropout']
) for _ in range(self.depth)
])
self.decoders = nn.ModuleList([
DecoderBlock(
dim=config['dim'],
n_heads=config['n_heads'],
attn_dropout=config['attn_dropout'],
mlp_dropout=config['mlp_dropout']
) for _ in range(self.depth)
])
self.ln_f = RMSNorm(config['dim'])
self.lm_head = nn.Linear(config['dim'],config['vocab_size'],bias=False)
self.embedding.class_embedding.weight = self.lm_head.weight
self.pad_token_id = config['pad_token_id']
self.register_buffer('tgt_mask',torch.tril(torch.ones(1,1,config['max_len'],config['max_len'])))
self.apply(self._init_weights)
def _init_weights(self, module):
if isinstance(module, nn.Linear):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
def create_src_mask(self,src):
return (src != self.pad_token_id).unsqueeze(1).unsqueeze(2) # N, 1, 1, src_len
def forward(self, src, tgt, labels=None):
src_mask = self.create_src_mask(src)
enc_out = self.embedding(src)
dec_out = self.embedding(tgt)
for i in range(self.depth):
enc_out = self.encoders[i](enc_out,mask=src_mask)
dec_out = self.decoders[i](dec_out,enc_out,src_mask=src_mask,tgt_mask=self.tgt_mask)
dec_out = self.ln_f(dec_out)
if labels is not None:
lm_logits = self.lm_head(dec_out)
loss = F.cross_entropy(lm_logits.view(-1, lm_logits.shape[-1]), labels.view(-1))
return loss
lm_logits = self.lm_head(dec_out[:,[-1],:])
return lm_logits
def generate(self,src,max_tokens=80,temperature=1.0,deterministic=False,eos=5,bos=None):
tgt = torch.ones(1,1).long() * bos
tgt = tgt.to(src.device)
for _ in range(max_tokens):
out = self(src,tgt)
out = out[:,-1,:] / temperature
probs = F.softmax(out,dim=-1)
if deterministic:
next_token = torch.argmax(probs,dim=-1,keepdim=True)
else:
next_token = torch.multinomial(probs,num_samples=1)
tgt = torch.cat([tgt,next_token],dim=1)
if next_token.item() == eos:
break
return tgt.cpu().flatten()