-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path1038.BSTtoGST.cs
68 lines (60 loc) · 1.97 KB
/
1038.BSTtoGST.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
// 1038. Binary Search Tree to Greater Sum Tree
// Given the root of a Binary Search Tree (BST), convert it to a Greater Tree such that every key of the original BST is changed to the original key plus the sum of all keys greater than the original key in BST.
// As a reminder, a binary search tree is a tree that satisfies these constraints:
// The left subtree of a node contains only nodes with keys less than the node's key.
// The right subtree of a node contains only nodes with keys greater than the node's key.
// Both the left and right subtrees must also be binary search trees.
// Example 1:
// Input: root = [4,1,6,0,2,5,7,null,null,null,3,null,null,null,8]
// Output: [30,36,21,36,35,26,15,null,null,null,33,null,null,null,8]
// Example 2:
// Input: root = [0,null,1]
// Output: [1,null,1]
/**
* Definition for a binary tree node.
* public class TreeNode {
* public int val;
* public TreeNode left;
* public TreeNode right;
* public TreeNode(int val=0, TreeNode left=null, TreeNode right=null) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
public class Solution {
int sum = 0;
public TreeNode BstToGst(TreeNode root) {
if(root == null)
return root;
BstToGst(root.right);
var temp = root.val;
sum += temp;
root.val = sum;
BstToGst(root.left);
return root;
}
}
public class Solution {
int sum;
public TreeNode BstToGst(TreeNode root) {
sum = DFSSum(root);
ConvertToGST(root);
return root;
}
private void ConvertToGST(TreeNode root){
if(root == null)
return;
ConvertToGST(root.left);
int val = root.val;
root.val = sum;
sum -= val;
ConvertToGST(root.right);
}
private int DFSSum(TreeNode root) {
if(root == null)
return 0;
return root.val + DFSSum(root.left) + DFSSum(root.right);
}
}