-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path1235.JobScheduling.cs
180 lines (157 loc) · 5.98 KB
/
1235.JobScheduling.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
// 1235. Maximum Profit in Job Scheduling
// We have n jobs, where every job is scheduled to be done from startTime[i] to endTime[i], obtaining a profit of profit[i].
// You're given the startTime, endTime and profit arrays, return the maximum profit you can take such that there are no two jobs in the subset with overlapping time range.
// If you choose a job that ends at time X you will be able to start another job that starts at time X.
// Example 1:
// Input: startTime = [1,2,3,3], endTime = [3,4,5,6], profit = [50,10,40,70]
// Output: 120
// Explanation: The subset chosen is the first and fourth job.
// Time range [1-3]+[3-6] , we get profit of 120 = 50 + 70.
// Example 2:
// Input: startTime = [1,2,3,4,6], endTime = [3,5,10,6,9], profit = [20,20,100,70,60]
// Output: 150
// Explanation: The subset chosen is the first, fourth and fifth job.
// Profit obtained 150 = 20 + 70 + 60.
// Example 3:
// Input: startTime = [1,1,1], endTime = [2,3,4], profit = [5,6,4]
// Output: 6
//Approch: Sort start time, linear search next job
// Time Complexity:O(n^2) in the worst case because for each job we may iterate over the remaining jobs to find the next valid job.
// Sorting step takes O(nlogn).
// Space Complexity:O(n) for memoization and recursion stack.
public class Solution
{
int[] maxProfit;
public int JobScheduling(int[] startTime, int[] endTime, int[] profit)
{
int n = profit.Length;
maxProfit = new int[n];
// Initialize max profit array with -1 for memoization
Array.Fill(maxProfit, -1);
// Create job tuples containing start, end times, and profit
(int start, int end, int profit)[] jobs = new (int, int, int)[n];
for (int i = 0; i < n; i++)
{
jobs[i] = (startTime[i], endTime[i], profit[i]);
}
// Sort jobs by their start time to facilitate recursive exploration
jobs = jobs.OrderBy(x => x.start).ToArray();
return Scheduling(jobs, 0, 0);
}
private int Scheduling((int start, int end, int profit)[] jobs, int idx, int time)
{
if (idx >= jobs.Length) return 0; // Base case: No more jobs
// Return memoized result if already computed
if (maxProfit[idx] != -1) return maxProfit[idx];
// Exclude current job and compute profit
int exProfit = Scheduling(jobs, idx + 1, time);
// Include current job and find next non-overlapping job
int inProfit = jobs[idx].profit;
for (int i = idx + 1; i < jobs.Length; i++)
{
if (jobs[i].start >= jobs[idx].end)
{
inProfit += Scheduling(jobs, i, time + jobs[idx].end);
break;
}
}
// Cache the result and return maximum of include/exclude
maxProfit[idx] = Math.Max(inProfit, exProfit);
return maxProfit[idx];
}
}
// Approch: Sort end time, binary search next job
// Time Complexity:
// Sorting: O(nlogn)
// Binary search for each job: O(nlogn)
// Total: O(nlogn)
// Space Complexity: O(n) for the dp array and job list.
public class Solution
{
public int JobScheduling(int[] startTime, int[] endTime, int[] profit)
{
int n = profit.Length;
// Create job tuples containing start, end times, and profit
(int start, int end, int profit)[] jobs = new (int, int, int)[n];
for (int i = 0; i < n; i++)
{
jobs[i] = (startTime[i], endTime[i], profit[i]);
}
// Sort jobs by their end time to simplify job selection
Array.Sort(jobs, (a, b) => a.end.CompareTo(b.end));
// Memoization array to store max profit until each job
int[] dp = new int[n];
dp[0] = jobs[0].profit;
for (int i = 1; i < n; i++)
{
// Include current job profit
int includeProfit = jobs[i].profit;
// Find the last non-conflicting job using binary search
int l = BinarySearch(jobs, i);
if (l != -1)
{
includeProfit += dp[l];
}
// Max of including or excluding the current job
dp[i] = Math.Max(dp[i - 1], includeProfit);
}
return dp[n - 1];
}
// Binary search to find the last job that doesn't overlap
private int BinarySearch((int start, int end, int profit)[] jobs, int index)
{
int low = 0, high = index - 1;
while (low <= high)
{
int mid = (low + high) / 2;
if (jobs[mid].end <= jobs[index].start)
{
if (jobs[mid + 1].end <= jobs[index].start)
{
low = mid + 1;
}
else
{
return mid;
}
}
else
{
high = mid - 1;
}
}
return -1;
}
}
//Raw
public class Solution {
int[] maxProfit;
public int JobScheduling(int[] startTime, int[] endTime, int[] profit)
{
maxProfit = new int[profit.Length];
(int start, int end, int profit)[] jobs = new (int, int, int)[profit.Length];
for(int i = 0; i < profit.Length; i++)
{
jobs[i] = (startTime[i], endTime[i], profit[i]);
}
jobs = jobs.OrderBy(x => x.start).ToArray();
Array.Fill(maxProfit, -1);
return Scheduling(jobs, 0, 0);
}
public int Scheduling((int start, int end, int profit)[] jobs, int idx, int time)
{
if (maxProfit[idx] == -1) {
int exProfit = idx + 1 < jobs.Length ? Scheduling(jobs, idx + 1, time) : 0;
int inProfit = jobs[idx].profit;
for(int i = idx+1; i < jobs.Length; i++) {
if (jobs[i].start >= jobs[idx].end)
{
inProfit += Scheduling(jobs, i, time + jobs[idx].end);
break;
}
}
maxProfit[idx] = Math.Max(inProfit, exProfit);
}
return maxProfit[idx];
}
}