-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdiscover_silhouette.py
123 lines (87 loc) · 4 KB
/
discover_silhouette.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import matplotlib; matplotlib.use('Agg')
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import numpy as np
from MulticoreTSNE import MulticoreTSNE as TSNE
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_samples, silhouette_score
import joblib
import numpy as np
import sys
import fasttext
np.random.seed(1991)
def discover_silhouette(sents_f, model_f, prefix='', max_k=10):
ks = []
metrics = []
model = fasttext.load_model(model_f)
embeddings = []
sentences = []
# load sentences
with open(sents_f) as handle:
for new_line in handle:
sentences.append(new_line.strip())
# sample
sentences = np.random.choice(sentences, 20000)
# get document embeddings
for sentence in sentences:
embeddings.append(model.get_sentence_vector(sentence))
embeddings = np.array(embeddings)
# TSNE
dimred = TSNE(n_jobs=4).fit_transform(embeddings)
# This bit of code from the sklearn example
for K in range(2, max_k):
fig, (ax1, ax2) = plt.subplots(1, 2)
fig.set_size_inches(18, 7)
ax1.set_xlim([-0.1, 1])
# The (n_clusters+1)*10 is for inserting blank space between silhouette
# plots of individual clusters, to demarcate them clearly.
ax1.set_ylim([0, len(embeddings) + (K + 1) * 10])
kmeans = KMeans(n_clusters=K, random_state=0).fit(dimred)
preds = kmeans.fit_predict(dimred)
metric = silhouette_score(dimred, preds)
ks.append(K)
metrics.append(metric)
sample_silhouette_values = silhouette_samples(dimred, preds)
y_lower = 10
for i in range(K):
# Aggregate the silhouette scores for samples belonging to
# cluster i, and sort them
ith_cluster_silhouette_values = \
sample_silhouette_values[preds == i]
ith_cluster_silhouette_values.sort()
size_cluster_i = ith_cluster_silhouette_values.shape[0]
y_upper = y_lower + size_cluster_i
color = cm.viridis(float(i) / K)
ax1.fill_betweenx(np.arange(y_lower, y_upper),
0, ith_cluster_silhouette_values,
facecolor=color, edgecolor=color, alpha=0.7)
# Label the silhouette plots with their cluster numbers at the middle
ax1.text(-0.05, y_lower + 0.5 * size_cluster_i, str(i))
# Compute the new y_lower for next plot
y_lower = y_upper + 10 # 10 for the 0 samples
ax1.set_title("The silhouette plot for the various clusters.")
ax1.set_xlabel("The silhouette coefficient values")
ax1.set_ylabel("Cluster label")
# The vertical line for average silhouette score of all the values
ax1.axvline(x=metric, color="red", linestyle="--")
ax1.set_yticks([]) # Clear the yaxis labels / ticks
ax1.set_xticks([-0.1, 0, 0.2, 0.4, 0.6, 0.8, 1])
# 2nd Plot showing the actual clusters formed
colors = cm.viridis(preds.astype(float) / K)
ax2.scatter(dimred[:, 0], dimred[:, 1], marker='.', s=30, lw=0, alpha=0.7,
c=colors, edgecolor='k')
# Labeling the clusters
centers = kmeans.cluster_centers_
# Draw white circles at cluster centers
ax2.scatter(centers[:, 0], centers[:, 1], marker='o',
c="white", alpha=1, s=200, edgecolor='k')
for i, c in enumerate(centers):
ax2.scatter(c[0], c[1], marker='$%d$' % i, alpha=1,
s=50, edgecolor='k')
ax2.set_title("The visualization of the clustered data.")
ax2.set_xlabel("Feature space for the 1st feature")
ax2.set_ylabel("Feature space for the 2nd feature")
plt.suptitle(("Silhouette analysis for KMeans clustering on sample data "
"with n_clusters = %d" % K),
fontsize=14, fontweight='bold')
plt.savefig(prefix + str(i) + 'stuff.png')