-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcovid19-xray.py
621 lines (419 loc) · 16.2 KB
/
covid19-xray.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
#Import Library
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
from sklearn.metrics import classification_report, confusion_matrix
from sklearn.model_selection import train_test_split
import torch
from torchvision import transforms, models
from torchvision.utils import make_grid
from torch.utils.data import Dataset, random_split, DataLoader, WeightedRandomSampler
import torch.nn.functional as F
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
import time
import os
from PIL import Image
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
from sklearn.metrics import classification_report, confusion_matrix
from sklearn.model_selection import train_test_split
import torch
from torchvision import transforms, models
from torchvision.utils import make_grid
from torch.utils.data import Dataset, random_split, DataLoader, WeightedRandomSampler
import torch.nn.functional as F
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
import time
import os
from PIL import Image
#Data Preparation
METADATA_COVID = '../input/covid-chest-xray/metadata.csv'
COVID_ROOT = '../input/covid-chest-xray/images'
PNEUMONIA_ROOT = '../input/chest-xray-pneumonia/chest_xray'
PNEUMONIA_TRAIN_ALL = PNEUMONIA_ROOT + '/train'
# PNEUMONIA_TRAIN = PNEUMONIA_ROOT+'/train/PNEUMONIA'
# NORMAL_TRAIN = PNEUMONIA_ROOT+'/train/NORMAL'
# PNEUMONIA_TEST = PNEUMONIA_ROOT+'/test/PNEUMONIA'
# NORMAL_TEST = PNEUMONIA_ROOT+'/test/NORMAL'
#target label
TARGET_LABEL = {0: 'NORMAL',
1: 'PNEUMONIA',
2: 'COVID19'}
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
project_name = 'chest X-ray'
METADATA_COVID = '../input/covid-chest-xray/metadata.csv'
COVID_ROOT = '../input/covid-chest-xray/images'
PNEUMONIA_ROOT = '../input/chest-xray-pneumonia/chest_xray'
PNEUMONIA_TRAIN_ALL = PNEUMONIA_ROOT + '/train'
# PNEUMONIA_TRAIN = PNEUMONIA_ROOT+'/train/PNEUMONIA'
# NORMAL_TRAIN = PNEUMONIA_ROOT+'/train/NORMAL'
# PNEUMONIA_TEST = PNEUMONIA_ROOT+'/test/PNEUMONIA'
# NORMAL_TEST = PNEUMONIA_ROOT+'/test/NORMAL'
#target label
TARGET_LABEL = {0: 'NORMAL',
1: 'PNEUMONIA',
2: 'COVID19'}
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
project_name = 'chest X-ray'
pneumonia_data = []
for dirname, _, filenames in os.walk(PNEUMONIA_TRAIN_ALL):
for filename in filenames:
if filename.endswith(".jpeg"):
pneumonia_data.append(os.path.join(dirname, filename))
image = []
label = []
for i in range(len(pneumonia_data)):
image.append(pneumonia_data[i].split('/')[-1])
label.append(pneumonia_data[i].split('/')[-2])
# pneoumonia and normal data
df_pneumonia = pd.DataFrame({"label": label, "image_file": image})
df_pneumonia.head()
sns.countplot(df_pneumonia['label'])
plt.title('Pneumonia train dataset');
#covid19 data
df = pd.read_csv(METADATA_COVID)
df_pa = df.drop(df[df.view != 'PA'].index) #only take PA(from back to front film closer to chest) View
covid19 = df_pa[df_pa['finding']=='COVID-19'] #only take covid-19 label
covid19 = covid19[['finding', 'filename']] #take its label and image file
covid19.columns = (['label', 'image_file']) #change columns name same to pneumonia
#covid19[covid19['image_file'].str.endswith('.gz')]
covid19.reset_index(drop=True, inplace=True)
print('Data size:' , len(covid19))
covid19.head()
#takes normal and pneumonia only 300 images
normal = df_pneumonia[df_pneumonia['label']=='NORMAL']
normal = normal.sample(frac=1, axis=0, random_state=7).reset_index(drop=True) #suffle rows
normal = normal[:141] #same with covid19 data
pneumonia = df_pneumonia[df_pneumonia['label']=='PNEUMONIA']
pneumonia = pneumonia.sample(frac=1, axis=0, random_state=7).reset_index(drop=True)
pnuemonia = pneumonia[:141] #same with covid19 data
#concat all data (covid, pneumonia and normal)
all_data = pd.concat([normal, pnuemonia, covid19], ignore_index=True)
all_data = all_data.sample(frac=1, axis=0, random_state=7).reset_index(drop=True)
all_data.head(10)
sns.countplot(all_data['label'])
plt.title('All Datasets');
Load All Data and Exploration
#split dataset
X_trainval, X_test, y_trainval, y_test = train_test_split(all_data['image_file'].values,
all_data['label'].values, test_size=0.05,
stratify=all_data['label'].values, random_state=7)
X_train, X_val, y_train, y_val = train_test_split(X_trainval, y_trainval, stratify=y_trainval, test_size=0.1,
random_state=7)
len(X_train), len(X_val), len(X_test)
class Xray_split(Dataset):
def __init__(self, root_dir_pnue, root_dir_covid, X, y, transform=None):
self.pnue_root = root_dir_pnue
self.covid_root = root_dir_covid
self.X = X
self.y = y
self.transform = transform
def __len__(self):
return len(self.X)
def __getitem__(self, idx):
image, label = self.X[idx], self.y[idx]
if self.y[idx] == 'COVID-19':
label = 2
img_fname = str(self.covid_root) + "/" + str(image)
img = Image.open(img_fname).convert("L")
if self.transform:
img = self.transform(img)
if self.y[idx] == 'NORMAL':
label = 0
img_fname = str(self.pnue_root) + "/NORMAL/" + str(image)
img = Image.open(img_fname)
if self.transform:
img = self.transform(img)
if self.y[idx] == 'PNEUMONIA':
label = 1
img_fname = str(self.pnue_root) + "/PNEUMONIA/" + str(image)
img = Image.open(img_fname)
if self.transform:
img = self.transform(img)
return img, int(label)
# mean = [0.4947]
# std = [0.2226]
mean = [0.0960, 0.0960, 0.0960]
std = [0.9341, 0.9341, 0.9341]
train_transform = transforms.Compose([transforms.Resize((512, 512)),
transforms.Grayscale(3), #output 3 channel grayscale
transforms.RandomResizedCrop((224, 224)),
transforms.RandomRotation(15),
transforms.ToTensor(),
transforms.Normalize(mean, std)
])
val_transform = transforms.Compose([transforms.Resize((512, 512)),
transforms.Grayscale(3),
transforms.ToTensor(),
transforms.Normalize(mean, std),
])
test_transform = transforms.Compose([transforms.Resize((512, 512)),
transforms.Grayscale(3),
transforms.ToTensor(),
transforms.Normalize(mean, std),
])
train_set = Xray_split(PNEUMONIA_TRAIN_ALL, COVID_ROOT, X_train, y_train, train_transform)
val_set = Xray_split(PNEUMONIA_TRAIN_ALL, COVID_ROOT, X_val, y_val, val_transform)
test_set = Xray_split(PNEUMONIA_TRAIN_ALL, COVID_ROOT, X_test, y_test, test_transform)
#look the training data (already transformed)
fig = plt.figure(figsize=(20, 5))
for i in range(30):
image, label = train_set[i]
ax = fig.add_subplot(3, 10, i+1, xticks=[], yticks = [])
ax.imshow(image[0], cmap='gray')
ax.set_title(TARGET_LABEL[label], color=("green" if label == 0 else 'red'))
#Dataloader
#find the mean and std
# nimages = 0
# mean = 0.
# std = 0.
# for batch, _ in train_loader:
# # Rearrange batch to be the shape of [B, C, W * H]
# batch = batch.view(batch.size(0), batch.size(1), -1)
# # Update total number of images
# nimages += batch.size(0)
# # Compute mean and std here
# mean += batch.mean(2).sum(0)
# std += batch.std(2).sum(0)
# # Final step
# mean /= nimages
# std /= nimages
# print(mean)
# print(std)
batch_size = 32 #have used 64 and 128 but 32 works better
train_loader = torch.utils.data.DataLoader(train_set, batch_size=batch_size, shuffle=True)
val_loader = torch.utils.data.DataLoader(val_set, batch_size=batch_size*2, shuffle=True)
test_loader = torch.utils.data.DataLoader(test_set, batch_size=batch_size, shuffle=False)
def show_batch(dl):
for images, labels in dl:
fig, ax = plt.subplots(figsize=(20, 25))
ax.set_xticks([]); ax.set_yticks([])
ax.imshow(make_grid(images, nrow=16).permute(1, 2, 0))
break
show_batch(train_loader)
#Modelling
#for get learning rate parameter
def get_lr(optimizer):
for param_group in optimizer.param_groups:
return param_group['lr']
#training loop
def fit(epochs, model, train_loader, val_loader, criterion, optimizer, scheduler):
torch.cuda.empty_cache()
#save variabel
train_losses = []
test_losses = []
train_scores = []
val_score = []
lrs = []
fit_time = time.time()
for e in range(epochs):
since = time.time()
running_loss = 0
train_score = 0
#training loop#
for image, label in train_loader:
#training phase
model.train()
image = image.to(device); label = label.to(device);
output = model(image)
#accuracy calulcation
ps = torch.exp(output)
_, top_class = ps.topk(1, dim=1)
correct = top_class == label.view(*top_class.shape)
train_score += torch.mean(correct.type(torch.FloatTensor))
#loss
loss = criterion(output, label)
#backward pass
loss.backward()
#update weight
optimizer.step()
optimizer.zero_grad()
scheduler.step()
lrs.append(get_lr(optimizer))
running_loss += loss.item()
else:
model.eval()
test_loss = 0
scores = 0
#validation loop#
with torch.no_grad():
for image, label in val_loader:
image = image.to(device); label = label.to(device);
output = model(image)
#accuracy calulcation
ps = torch.exp(output)
_, top_class = ps.topk(1, dim=1)
correct = top_class == label.view(*top_class.shape)
scores += torch.mean(correct.type(torch.FloatTensor))
#loss
loss = criterion(output, label)
test_loss += loss.item()
#calculation mean for each batch
train_losses.append(running_loss/len(train_loader))
test_losses.append(test_loss/len(val_loader))
train_scores.append(train_score/len(train_loader))
val_score.append(scores/len(val_loader))
print("Epoch: {}/{}.. ".format(e+1, epochs),
"Train Loss: {:.3f}.. ".format(running_loss/len(train_loader)),
"Val Loss: {:.3f}.. ".format(test_loss/len(val_loader)),
"Train acc Score: {:.3f}.. ".format(train_score/len(train_loader)),
"Val acc : {:.3f}.. ".format(scores/len(val_loader)),
"Lr: {:.4f} ".format(get_lr(optimizer)),
"Time: {:.2f}s" .format(time.time()-since)
)
history = {'train_loss' : train_losses, 'val_loss': test_losses,
'train_acc': train_scores, 'val_acc':val_score, 'lrs': lrs}
print('Total time: {:.2f} m' .format((time.time()- fit_time)/60))
return history
def plot_loss(history, n_epoch):
epoch = [x for x in range(1, n_epoch+1)]
plt.plot(epoch, history['train_loss'], label='Train_loss')
plt.plot(epoch, history['val_loss'], label='val_loss')
plt.title('Loss per epoch')
plt.ylabel('Loss')
plt.xlabel('epoch')
plt.legend();
plt.show()
def plot_score(history, n_epoch):
epoch = [x for x in range(1, n_epoch+1)]
plt.plot(epoch, history['train_acc'], label='Train_acc')
plt.plot(epoch, history['val_acc'], label='val_acc')
plt.title('Accuracy per epoch')
plt.ylabel('score')
plt.xlabel('epoch')
plt.legend();
plt.show()
def plot_lr(history):
plt.plot(history['lrs'], label='learning rate')
plt.title('One Cycle Learning Rate')
plt.ylabel('Learning Rate')
plt.xlabel('steps')
plt.legend();
plt.show()
Mobilenet_v2
output_label = 3
model_mobile = models.mobilenet_v2(pretrained=True)
model_mobile.classifier = nn.Sequential(nn.Linear(in_features=1280, out_features=output_label))
model_mobile.to(device);
model_mobile
max_lr = 0.0001
epoch = 20
weight_decay = 1e-4
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model_mobile.parameters(), lr=max_lr, weight_decay=weight_decay)
sched = torch.optim.lr_scheduler.OneCycleLR(optimizer, max_lr, epochs=epoch,
steps_per_epoch=len(train_loader))
history_mobile = fit(epoch, model_mobile, train_loader, val_loader, criterion, optimizer, sched)
torch.save(model_mobile.state_dict(),'mobilenet.pth')
plot_score(history_mobile, epoch)
plot_loss(history_mobile, epoch)
plot_lr(history_mobile)
#Resnet18
model_resnet18 = models.resnet18(pretrained=True)
model_resnet18.fc = nn.Linear(512, output_label)
model_resnet18.to(device)
model_resnet18
max_lr = 0.0001
epoch = 20
weight_decay = 1e-4
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model_resnet18.parameters(), lr=max_lr, weight_decay=weight_decay)
sched = torch.optim.lr_scheduler.OneCycleLR(optimizer, max_lr, epochs=epoch,
steps_per_epoch=len(train_loader))
history_re18 = fit(epoch, model_resnet18, train_loader, val_loader, criterion, optimizer, sched)
torch.save(model_resnet18.state_dict(),'resnet18.pth')
plot_score(history_re18, epoch)
plot_loss(history_re18, epoch)
plot_lr(history_re18)
#Evaluation and Report
def predict_dataset(dataset, model):
model.eval()
model.to(device)
torch.cuda.empty_cache()
predict = []
y_true = []
for image, label in dataset:
#image = image.to(device); label= label.to(device)
image = image.unsqueeze(0)
image = image.to(device);
output = model(image)
ps = torch.exp(output)
_, top_class = ps.topk(1, dim=1)
predic = np.squeeze(top_class.cpu().numpy())
predict.append(predic)
y_true.append(label)
return list(y_true), list(np.array(predict).reshape(1,-1).squeeze(0))
def report(y_true, y_predict, title='MODEL OVER TEST SET'):
print(classification_report(y_true, y_predict))
sns.heatmap(confusion_matrix(y_true, y_predict), annot=True)
plt.yticks(np.arange(0.5, len(TARGET_LABEL)), labels=list(TARGET_LABEL.values()), rotation=0);
plt.xticks(np.arange(0.5, len(TARGET_LABEL)), labels=list(TARGET_LABEL.values()), rotation=45)
plt.title(title)
plt.show()
def plot_predict(test_set, y_predict):
"""it takes longer time to plot, if you want it faster
comment or delete tight_layout
"""
fig = plt.figure(figsize=(20, 20))
for i in range(len(test_set)):
image, label = test_set[i]
ax = fig.add_subplot(4, 6, i+1, xticks=[], yticks = [])
ax.imshow(image[0], cmap='gray')
ax.set_title("{}({})" .format(TARGET_LABEL[y_predict[i]], TARGET_LABEL[label]),
color=("green" if y_predict[i] == label else 'red'), fontsize=12)
plt.tight_layout() #want faster comment or delete this
plt.show()
y_true, y_predict = predict_dataset(test_set, model_mobile)
report(y_true, y_predict, title='Mobilenet_v2 Over Test Set')
plot_predict(test_set, y_predict)
y_true, y_predict = predict_dataset(test_set, model_resnet18)
report(y_true, y_predict, 'Resnet18')
plot_predict(test_set, y_predict)