This repository has been archived by the owner on Jun 11, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 4
/
poc.py
87 lines (71 loc) · 2.47 KB
/
poc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
# Proof-of-concept
import cv2
import sys
from constants import *
from emotion_recognition import EmotionRecognition
import numpy as np
cascade_classifier = cv2.CascadeClassifier(CASC_PATH)
def brighten(data,b):
datab = data * b
return datab
def format_image(image):
if len(image.shape) > 2 and image.shape[2] == 3:
image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
else:
image = cv2.imdecode(image, cv2.CV_LOAD_IMAGE_GRAYSCALE)
faces = cascade_classifier.detectMultiScale(
image,
scaleFactor = 1.3,
minNeighbors = 5
)
# None is we don't found an image
if not len(faces) > 0:
return None
max_area_face = faces[0]
for face in faces:
if face[2] * face[3] > max_area_face[2] * max_area_face[3]:
max_area_face = face
# Chop image to face
face = max_area_face
image = image[face[1]:(face[1] + face[2]), face[0]:(face[0] + face[3])]
# Resize image to network size
try:
image = cv2.resize(image, (SIZE_FACE, SIZE_FACE), interpolation = cv2.INTER_CUBIC) / 255.
except Exception:
print("[+] Problem during resize")
return None
# cv2.imshow("Lol", image)
# cv2.waitKey(0)
return image
# Load Model
network = EmotionRecognition()
network.build_network()
video_capture = cv2.VideoCapture(0)
font = cv2.FONT_HERSHEY_SIMPLEX
feelings_faces = []
for index, emotion in enumerate(EMOTIONS):
feelings_faces.append(cv2.imread('./emojis/' + emotion + '.png', -1))
while True:
# Capture frame-by-frame
ret, frame = video_capture.read()
# Predict result with network
result = network.predict(format_image(frame))
# Draw face in frame
# for (x,y,w,h) in faces:
# cv2.rectangle(frame, (x,y), (x+w,y+h), (255,0,0), 2)
# Write results in frame
if result is not None:
for index, emotion in enumerate(EMOTIONS):
cv2.putText(frame, emotion, (10, index * 20 + 20), cv2.FONT_HERSHEY_PLAIN, 0.5, (0, 255, 0), 1);
cv2.rectangle(frame, (130, index * 20 + 10), (130 + int(result[0][index] * 100), (index + 1) * 20 + 4), (255, 0, 0), -1)
face_image = feelings_faces[result[0].index(max(result[0]))]
# Ugly transparent fix
for c in range(0, 3):
frame[200:320, 10:130, c] = face_image[:,:,c] * (face_image[:, :, 3] / 255.0) + frame[200:320, 10:130, c] * (1.0 - face_image[:, :, 3] / 255.0)
# Display the resulting frame
cv2.imshow('Video', frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# When everything is done, release the capture
video_capture.release()
cv2.destroyAllWindows()