-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlane.py
86 lines (71 loc) · 3.08 KB
/
lane.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import cv2
import numpy as np
import matplotlib.pyplot as plt
def make_coodenates(image,line_parameters):
slope,intercept=line_parameters
y1=image.shape[0]
y2=int(y1*(3/5))
x1=int((y1-intercept)/slope) # y=mx+b x=(y-b)/m
x2=int((y2-intercept)/slope) # y=mx+b x=(y-b)/m
return np.array([x1,y1,x2,y2])
def average_slope_intercept(image,lines):
#when x increase with increase in y its slope is +ve and when x decrease with increase in y or vise-versa slope is -ve
left_fit=[]
right_fit=[]
for line in lines:
x1,y1,x2,y2=line.reshape(4)
parameters=np.polyfit((x1,x2),(y1,y2),1)
slope=parameters[0]
intercept=parameters[1] #when x increase with increase in y its slope is +ve and when x decrease with increase in y or vise-versa slope is -ve
if slope < 0 :
left_fit.append((slope,intercept))
else:
right_fit.append((slope,intercept))
left_fit_average=np.average(left_fit,axis=0)
right_fit_average=np.average(right_fit,axis=0)
left_line = make_coodenates(image,left_fit_average)
right_line = make_coodenates(image,right_fit_average)
return np.array([left_line,right_line])
# print(left_fit)
# print(right_fit)
def canny(image):
gray=cv2.cvtColor(image,cv2.COLOR_BGR2GRAY) #we are converting it into gray scale beacuse it is faster to process one channel rather than 3 channels(rgb)
blur=cv2.GaussianBlur(gray,(5,5),0)
canny=cv2.Canny(blur,50,150) #we generally use one : three and canny is used to detect sudden change in gradient and find the edges
return canny
def region_of_interest(image):
height=image.shape[0]
polygon=np.array([
[(200,height),(1100,height),(550,250)]])
mask=np.zeros_like(image)
cv2.fillPoly(mask,polygon,255)
masked_image=cv2.bitwise_and(image,mask)
return masked_image
def display_line(image,lines):
line_image=np.zeros_like(image)
if lines is not None:
for line in lines:
x1,y1,x2,y2=line.reshape(4)
cv2.line(line_image,(x1,y1),(x2,y2),(0,255,0),10)
return line_image
# image=cv2.imread('test_image.jpg')
# lane_image=np.copy(image)
# canny = canny(lane_image)
# crop_image=region_of_interest(canny)
# lines=cv2.HoughLinesP(crop_image,2,np.pi/180,100,np.array([]),minLineLength=40,maxLineGap=5)
# averaged_lines=average_slope_intercept(lane_image,lines)
# line_image=display_line(lane_image,averaged_lines)
# combo_image=cv2.addWeighted(lane_image,0.8,line_image,1,1)
# cv2.imshow("image",combo_image)
# cv2.waitKey(0)
cap=cv2.VideoCapture("test2.mp4")
while(cap.isOpened()):
rate,frame=cap.read()
canny_img = canny(frame)
crop_image=region_of_interest(canny_img)
lines=cv2.HoughLinesP(crop_image,2,np.pi/180,100,np.array([]),minLineLength=40,maxLineGap=5)
averaged_lines=average_slope_intercept(frame,lines)
line_image=display_line(frame,averaged_lines)
combo_image=cv2.addWeighted(frame,0.8,line_image,1,1)
cv2.imshow("image",combo_image)
cv2.waitKey(1)