forked from xuelang-wang/Paper-code-implementation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAKCF_LN.m
84 lines (76 loc) · 3.01 KB
/
AKCF_LN.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
%Alam S M S, Natarajan B, Pahwa A. Agent Based Optimally Weighted Kalman Consensus Filter over a Lossy Network[C]// IEEE %Global Communications Conference. IEEE, 2015:1-6.
%By xuelang-wang
close all
clear
clc
%%%%%%%%%%%%%%%%%%%%%初始化两节点(SYS)
F = [0.95 0 0;1 0.9 0;1 1 0.8];%全局转移矩阵
Q = diag([1.8 0.9 0.5]);%全局系统噪声
T = {[1 0 0;0 1 0];[0 1 0;0 0 1]};%提取节点转移矩阵
mu = [10 5 8]';%初始状态估计
sigma = diag([0.8 0.2 0.5]);%初始状态估计误差
H = {[2,0];[3,0]};%节点量测矩阵
R = {0.0648;0.05};%节点量测误差
S = {[0 1];[1 0]};%提取共享矩阵
OS = {[0 1]';[1 0]'};%修复共享矩阵
U = {[1 0];[0 1]};%提取不共享矩阵
OU = {[1 0]';[0 1]'};%修复不共享矩阵
P = {0 1;1 0};%发射信号节点的共享提取矩阵
L = {0 1;1 0};%接收信号节点的共享提取矩阵
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%Algorithm AKCF
t = 74;%迭代步数
N = 1000;%Monte Carlo 实验次数
E = [0.4;0.48];%一致性水平
p = 0.6;%丢包率(故障率)
for n=1:2
for k =1:N;
X_real(:,1) = mu;%全局状态真实值
for i = 1:2
Fk{i,1} = T{i,1}*F*T{i,1}';%节点转移矩阵
Qk{i,1} = T{i,1}*Q*T{i,1}';%节点系统误差
x_real{i,1} = T{i,1}*X_real(:,1);%节点状态真实值
x_est{i,1} = T{i,1}*X_real(:,1);%节点状态估计值
M_est{i,1} = T{i,1}*sigma*T{i,1}';%节点估计误差
end
for j = 1:t
X_real(:,j+1) = F*X_real(:,j)+diag(normrnd(0,Q,3,3));%全局状态真实更新
for i = 1:2
x_real{i,j+1} = T{i,1}*X_real(:,j+1);%提取节点更新状态
y{i,j+1} = H{i,1}*x_real{i,j+1}+normrnd(0,R{i,1},1,1);%观测值
x_pre{i,1} = Fk{i,1}*x_est{i,j};%一步预测
M_pre{i,1} = Fk{i,1}*M_est{i,j}*Fk{i,1}'+Qk{i,1};%预测估计误差
K{i,1} = M_pre{i,1}*H{i,1}'*inv(H{i,1}*M_pre{i,1}*H{i,1}'+R{i,1});%滤波增益
M_est{i,j+1} = M_pre{i,1}-K{i,1}*H{i,1}*M_pre{i,1};%节点更新状态误差
b{i,j+1} = x_pre{i,1}+K{i,1}*(y{i,j+1}-H{i,1}*x_pre{i,1});%节点更新状态
W{i,j+1} = E(n,1)*(OS{i,1})'*M_pre{i,1}*(inv(Fk{i,1}))'*OS{i,1};%%修正权重
end
for i =1:2
switch i
case 1
x_est_s{i,j+1} = S{i,1}*b{i,j+1}+Benuli(p)*W{i,j+1}*(P{2,1}*S{2,1}*x_pre{2,1}-L{2,1}*S{1,1}*x_pre{1,1});
case 2
x_est_s{i,j+1} = S{i,1}*b{i,j+1}+Benuli(p)*W{i,j+1}*(P{1,2}*S{1,1}*x_pre{1,1}-L{1,2}*S{2,1}*x_pre{2,1});
end
x_est{i,j+1} = OS{i,1}*x_est_s{i,j+1}+OU{i,1}*U{i,1}*b{i,j+1};
e{i,j+1} = x_est{i,j+1}-T{i,1}*X_real(:,j+1);
end
MSD(k,j+1) = e{1,j+1}'*e{1,j+1}+e{2,j+1}'*e{2,j+1};
end
end
TMSD=sum(MSD(:,:))/1000;
TMSD(1,1) = 0;
if n == 1
semilogy(1:t+1,TMSD(1,:),'vb-');
else
semilogy(1:t+1,TMSD(1,:),'^r-');
end
hold on
end
axis([0 t+1 1 1e7]);
grid on;
h=legend('\epsilon = 0.4','\epsilon = 0.48');
h.Location='northwest';
xlabel('Time Index t');
ylabel('TMSD_t');
title('SYS in Lossy Network(\rho = 0.6)');