-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreconstruct.py
155 lines (137 loc) · 4.47 KB
/
reconstruct.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import os
import re
import torch
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
from matplotlib.backends.backend_pdf import PdfPages
from cifar_alex import CifarAlexNet
def imshow(img):
img = img.cpu()
npimg = img.numpy()
plt.imshow(np.transpose(npimg, (1, 2, 0)))
plt.show()
def getTargets(img):
torchvision.utils.make_grid(img)
img = img / 2 + 0.5
return img
def show_result(img):
torchvision.utils.make_grid(img)
img = img / 2 + 0.5
imshow(img)
class ReconstructNet(nn.Module):
def __init__(self):
super(ReconstructNet, self).__init__()
self.conv1 = nn.Conv2d(128, 128, 3, padding = 1)
self.conv2 = nn.Conv2d(128, 128, 3, padding = 1)
self.conv3 = nn.Conv2d(128, 128, 3, padding = 1)
self.convt1 = nn.ConvTranspose2d(128, 64, 5, padding = 2, output_padding = 1, stride = 2)
self.convt2 = nn.ConvTranspose2d(64, 32, 5, padding = 2, output_padding = 1, stride = 2)
self.convt3 = nn.ConvTranspose2d(32, 3, 5, padding =2 , output_padding = 1, stride = 2)
def forward(self, inputs):
x = inputs
x = F.leaky_relu(self.conv1(x), negative_slope = 0.2)
x = F.leaky_relu(self.conv2(x), negative_slope = 0.2)
x = F.leaky_relu(self.conv3(x), negative_slope = 0.2)
x = F.leaky_relu(self.convt1(x), negative_slope = 0.2)
x = F.leaky_relu(self.convt2(x), negative_slope = 0.2)
x = self.convt3(x)
return x
if __name__ == "__main__":
keepOn = True
# Prepare the dataset
transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5),(0.5, 0.5, 0.5))])
trainset = torchvision.datasets.CIFAR10(root = './data', train = True, transform = transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size = 128, shuffle = True, num_workers = 0)
testset = torchvision.datasets.CIFAR10(root='./data', train=False, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size = 128, shuffle=False, num_workers=0)
classes = ('plane', 'car', 'bird', 'cat',
'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
device = torch.device("cuda:0")
# Load the pretrained alexnet
alexnet = torch.load("alex_trained.pkl")
alexnet.eval()
# Init ReconstructNet
net = ReconstructNet()
st = 0
if keepOn:
res = os.listdir("./data/exp2")
for netFile in res:
last = int(re.sub("\D","",netFile))
if last > st:
st = last
net = torch.load("./data/exp2/reconstruct" + str(st) + ".pkl", \
map_location = {"cuda:2":"cuda:0"})
net.to(device)
crit = nn.MSELoss(size_average = False)
alexnet.to(device)
# Defince the detail of training
learningRate = [0.0001 for i in range(40)]
learningRate.extend([0.00001 for i in range(31)])
# Record performance
train_loss = []
test_loss = []
x_axis = []
# Train and Test
for epoch in range(st, 71):
x_axis.append(epoch + 1)
optimizer = optim.Adam(net.parameters(), lr = learningRate[epoch])
# Train
accu_loss = 0
batchNum = 0
for i, data in enumerate(trainloader, 0):
batchNum += 1
optimizer.zero_grad()
inputs, labels = data
inputs = inputs.to(device)
res, feature = alexnet(inputs)
targets = getTargets(inputs)
outputs = net(feature)
loss = crit(outputs, targets)
accu_loss += loss.item()
loss.backward()
optimizer.step()
print('[train] epoch: %d, batch: %d, loss: %.5f' % (epoch + 1, (i + 1), accu_loss / (i+1)))
train_loss.append(accu_loss / batchNum)
batchNum = 0
# Test
with torch.no_grad():
accu_loss = 0
for i, data in enumerate(testloader, 0):
batchNum += 1
inputs, labels = data
inputs = inputs.to(device)
res, feature = alexnet(inputs)
targets = getTargets(inputs)
outputs = net(feature)
loss = crit(outputs, targets)
accu_loss += loss.item()
if i == 0:
imshow(targets[73])
imshow(outputs[73])
print('[test] epoch: %d, batch: %d, loss: %.5f' % (epoch + 1, (i + 1), accu_loss / (i+1)))
test_loss.append(accu_loss / batchNum)
pdf = PdfPages("reconstruct.pdf")
plt.figure(1)
plt.plot(x_axis, train_loss, x_axis, test_loss)
plt.xlabel("epoch")
plt.ylabel("loss")
pdf.savefig()
plt.close()
pdf.close()
# Save the net
net_name = "./data/exp2/reconstruct" + str(epoch+1) + ".pkl"
torch.save(net, net_name)
print("over")
# little test before official work
#dataiter = iter(trainloader)
#images, labels = dataiter.next()
#images = images.to(device)
#res, feature = alexnet(images)
#targets = getTargets(images)