-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_student.py
373 lines (307 loc) · 14.9 KB
/
train_student.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
# Copyright (c) 2018-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
#
import numpy as np
from common.arguments import parse_args
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import os
import sys
import errno
from common.camera import *
from common.model_teacher import Teacher_net
from common.loss import *
from common.generators_pspt import PoseGenerator,PoseGenerator_new
from common.function import *
from time import time
from common.utils import deterministic_random
import math
from torch.utils.data import DataLoader
from common.model_student import Student_net
args = parse_args()
print(args)
try:
# Create checkpoint directory if it does not exist
os.makedirs(args.checkpoint)
except OSError as e:
if e.errno != errno.EEXIST:
raise RuntimeError('Unable to create checkpoint directory:', args.checkpoint)
# bones = [(0,1),(1,2),(2,3),(0,4),(4,5),(5,6),(0,7),(8,11),(11,12),(12,13),(8,14),(14,15),(15,16),(7,8),(8,9),(9,10)]
# avg_bone_length = [0.13452314, 0.4557758 , 0.4516843 , 0.13452327, 0.45577532 ,0.4516843,0.2456195 ,0.15755513, 0.28403646,
# 0.24994996 ,0.15755513, 0.28403646, 0.24994996 ,0.2543286 , 0.11673375 ,0.11501251]
# bone_pairs = [(7, 11, 7, 14), (11, 12, 14, 15), (12, 13, 15, 16), (0, 4, 0, 1), (4, 5, 1, 2), (5, 6, 2, 3)]
print('Loading dataset...')
dataset_path = 'data/data_3d_' + args.dataset + '.npz'
if args.dataset == 'h36m':
from common.h36m_dataset import Human36mDataset
dataset = Human36mDataset(dataset_path)
elif args.dataset.startswith('humaneva'):
from common.humaneva_dataset import HumanEvaDataset
dataset = HumanEvaDataset(dataset_path)
elif args.dataset.startswith('custom'):
from common.custom_dataset import CustomDataset
dataset = CustomDataset('data/data_2d_' + args.dataset + '_' + args.keypoints + '.npz')
else:
raise KeyError('Invalid dataset')
print('Preparing data...')
for subject in dataset.subjects():
for action in dataset[subject].keys():
anim = dataset[subject][action]
if 'positions' in anim:
positions_3d = []
for cam in anim['cameras']:
pos_3d = world_to_camera(anim['positions'], R=cam['orientation'], t=cam['translation'])
pos_3d[:, :] -= pos_3d[:, :1] # Remove global offset
positions_3d.append(pos_3d)
anim['positions_3d'] = positions_3d
print('Loading 2D detections...')
keypoints = np.load('data/data_2d_' + args.dataset + '_' + args.keypoints + '.npz', allow_pickle=True)
keypoints_metadata = keypoints['metadata'].item()
keypoints_symmetry = keypoints_metadata['keypoints_symmetry']
kps_left, kps_right = list(keypoints_symmetry[0]), list(keypoints_symmetry[1])
joints_left, joints_right = list(dataset.skeleton().joints_left()), list(dataset.skeleton().joints_right())
keypoints = keypoints['positions_2d'].item()
for subject in dataset.subjects():
assert subject in keypoints, 'Subject {} is missing from the 2D detections dataset'.format(subject)
for action in dataset[subject].keys():
if args.dataset != 'gt' and action =='Directions' and subject =='S11':
continue
assert action in keypoints[subject], 'Action {} of subject {} is missing from the 2D detections dataset'.format(action,
subject)
if 'positions_3d' not in dataset[subject][action]:
continue
for cam_idx in range(len(keypoints[subject][action])):
# We check for >= instead of == because some videos in H3.6M contain extra frames
mocap_length = dataset[subject][action]['positions_3d'][cam_idx].shape[0]
assert keypoints[subject][action][cam_idx].shape[0] >= mocap_length
if keypoints[subject][action][cam_idx].shape[0] > mocap_length:
# Shorten sequence
keypoints[subject][action][cam_idx] = keypoints[subject][action][cam_idx][:mocap_length]
assert len(keypoints[subject][action]) == len(dataset[subject][action]['positions_3d'])
for subject in keypoints.keys():
for action in keypoints[subject]:
for cam_idx, kps in enumerate(keypoints[subject][action]):
# Normalize camera frame
cam = dataset.cameras()[subject][cam_idx]
#kps[..., :2] = normalize_screen_coordinates(kps[..., :2], w=cam['res_w'], h=cam['res_h'])
kps -= kps[:,:1]
keypoints[subject][action][cam_idx] = kps
subjects_train = args.subjects_train.split(',')
subjects_test = args.subjects_test.split(',')
def fetch(subjects, action_filter=None, subset=1, parse_3d_poses=True):
out_poses_3d = []
out_poses_2d = []
out_camera_params = []
for subject in subjects:
for action in keypoints[subject].keys():
if action_filter is not None:
found = False
for a in action_filter:
if action.startswith(a):
found = True
break
if not found:
continue
poses_2d = keypoints[subject][action]
for i in range(len(poses_2d)): # Iterate across cameras
out_poses_2d.append(poses_2d[i])
if subject in dataset.cameras():
cams = dataset.cameras()[subject]
assert len(cams) == len(poses_2d), 'Camera count mismatch'
for cam in cams:
if 'intrinsic' in cam:
out_camera_params.append(np.tile((cam['intrinsic'])[None,:],(len(poses_2d[i]),1)))
if parse_3d_poses and 'positions_3d' in dataset[subject][action]:
poses_3d = dataset[subject][action]['positions_3d']
assert len(poses_3d) == len(poses_2d), 'Camera count mismatch'
for i in range(len(poses_3d)): # Iterate across cameras
out_poses_3d.append(poses_3d[i])
if len(out_camera_params) == 0:
out_camera_params = None
if len(out_poses_3d) == 0:
out_poses_3d = None
stride = args.downsample
if subset < 1:
for i in range(len(out_poses_2d)):
n_frames = int(round(len(out_poses_2d[i]) // stride * subset) * stride)
start = deterministic_random(0, len(out_poses_2d[i]) - n_frames + 1, str(len(out_poses_2d[i])))
out_poses_2d[i] = out_poses_2d[i][start:start + n_frames:stride]
if out_poses_3d is not None:
out_poses_3d[i] = out_poses_3d[i][start:start + n_frames:stride]
elif stride > 1:
# Downsample as requested
for i in range(len(out_poses_2d)):
out_poses_2d[i] = out_poses_2d[i][::stride]
if out_poses_3d is not None:
out_poses_3d[i] = out_poses_3d[i][::stride]
out_camera_params[i] = out_camera_params[i][::stride]
return out_camera_params, out_poses_3d, out_poses_2d
action_filter = None if args.actions == '*' else args.actions.split(',')
if action_filter is not None:
print('Selected actions:', action_filter)
cameras_valid, poses_valid, poses_valid_2d = fetch(subjects_test, action_filter)
model_pos_train = Teacher_net(poses_valid_2d[0].shape[-2],dataset.skeleton().num_joints(),poses_valid_2d[0].shape[-1])
model_pos = Teacher_net(poses_valid_2d[0].shape[-2],dataset.skeleton().num_joints(),poses_valid_2d[0].shape[-1])
adj = adj_mx_from_skeleton(dataset.skeleton())
model_depth_train = Student_net(adj, args.hid_dim, num_layers=args.n_blocks, p_dropout=0.0,
nodes_group=dataset.skeleton().joints_group())
model_depth = Student_net(adj, args.hid_dim, num_layers=args.n_blocks, p_dropout=0.0,
nodes_group=dataset.skeleton().joints_group())
model_params = 0
for parameter in model_depth.parameters():
model_params += parameter.numel()
print('INFO: Trainable parameter count:', model_params)
if torch.cuda.is_available():
model_pos = model_pos.cuda()
model_pos_train = model_pos_train.cuda()
model_depth_train = model_depth_train.cuda()
model_depth = model_depth.cuda()
chk_filename = args.teacher_checkpoint
print('Loading checkpoint', chk_filename)
checkpoint = torch.load(chk_filename, map_location=lambda storage, loc: storage)
model_pos_train.load_state_dict(checkpoint['model_pos'],strict=False)
model_pos.load_state_dict(checkpoint['model_pos'],strict=False)
valid_loader = DataLoader(PoseGenerator(poses_valid, poses_valid_2d, cameras_valid),
batch_size=1024, shuffle=False,
num_workers=args.num_workers, pin_memory=True)
cameras_train, poses_train, poses_train_2d = fetch(subjects_train, action_filter, subset=args.subset)
lr = args.learning_rate
optimizer = torch.optim.SGD(model_depth_train.parameters(), lr=lr,
momentum=args.momentum,
weight_decay=args.weight_decay)
# optimizer = optim.Adam(model_depth_train.parameters(), lr=lr, amsgrad=True)
lr_decay = args.lr_decay
losses_3d_train_rp = []
losses_3d_train_cs = []
losses_3d_valid_p1 = []
losses_3d_valid_p2 = []
epoch = 0
initial_momentum = 0.1
final_momentum = 0.001
train_loader = DataLoader(PoseGenerator(poses_train, poses_train_2d, cameras_train), batch_size=args.batch_size,
shuffle=True, num_workers=args.num_workers, pin_memory=True)
print('*** Generating depth labels... ***')
model_pos.load_state_dict(model_pos_train.state_dict())
model_pos.eval()
pose_2d_ft = []
pose_3d_ft = []
with torch.no_grad():
for i, (inputs_3d, inputs_2d, inputs_scale) in enumerate(train_loader):
if torch.cuda.is_available():
inputs_3d = inputs_3d.cuda()
inputs_2d = inputs_2d.cuda()
# Predict 3D poses
preds = model_pos(inputs_2d)
shape_camera_coord = preds['shape_camera_coord']
pose_2d_ft.append(inputs_2d.cpu())
pose_3d_ft.append(shape_camera_coord[:,:,2:3].cpu())
train_loader_new = DataLoader(PoseGenerator_new(pose_3d_ft, pose_2d_ft), batch_size=args.batch_size,
shuffle=True, num_workers=args.num_workers, pin_memory=True)
print('*** Start teaching... ***')
while epoch < args.epochs:
start_time = time()
epoch_loss_3d_train_rp = 0
epoch_loss_3d_train_cs = 0
N = 0
model_depth_train.train()
# Regular supervised scenario
for i, (inputs_depth, inputs_2d) in enumerate(train_loader_new):
if torch.cuda.is_available():
inputs_depth = inputs_depth.cuda()
inputs_2d = inputs_2d.cuda()
optimizer.zero_grad()
# Predict 3D poses
preds = model_depth_train(inputs_2d)
loss_reprojection = mpjpe(preds['depth'], inputs_depth)
loss_consistancy = preds['l_reconstruct']
loss_total = args.reploss_weight * loss_reprojection + loss_consistancy
epoch_loss_3d_train_rp += inputs_2d.shape[0] * loss_reprojection.item()
epoch_loss_3d_train_cs += inputs_2d.shape[0] * loss_total.item()
N += inputs_2d.shape[0]
loss_total.backward()
optimizer.step()
losses_3d_train_rp.append(epoch_loss_3d_train_rp / N)
losses_3d_train_cs.append(epoch_loss_3d_train_cs / N)
# End-of-epoch evaluation
with torch.no_grad():
model_depth.load_state_dict(model_depth_train.state_dict())
model_depth.eval()
epoch_error_p1 = 0
epoch_error_p2 = 0
N = 0
if not args.no_eval:
# Evaluate on test set
for i, (inputs_3d, inputs_2d, inputs_scale) in enumerate(valid_loader):
if torch.cuda.is_available():
inputs_3d = inputs_3d.cuda()
inputs_2d = inputs_2d.cuda()
# Predict 3D poses
#inputs_2d=inputs_3d[:,:,:2]
preds = model_depth(inputs_2d)
shape_camera_coord = preds['shape_3d']
shape_camera_coord_flip = shape_camera_coord.clone()
shape_camera_coord_flip[:,:,2] = -shape_camera_coord[:,:,2]
shape_camera_coord = calibrate_by_scale(shape_camera_coord,inputs_3d)
shape_camera_coord_flip = calibrate_by_scale(shape_camera_coord_flip,inputs_3d)
shape_camera_coord = shape_camera_coord - shape_camera_coord[:,0:1,:]
shape_camera_coord_flip = shape_camera_coord_flip - shape_camera_coord_flip[:,0:1,:]
inputs_3d = inputs_3d - inputs_3d[:,0:1,:]
inputs_scale = np.asarray(inputs_scale)
dist = calc_dist(shape_camera_coord, inputs_3d)
p_dist = p_mpjpe(shape_camera_coord, inputs_3d)
dist_flip = calc_dist(shape_camera_coord_flip, inputs_3d)
p_dist_flip = p_mpjpe(shape_camera_coord_flip,inputs_3d)
dist_best = np.minimum(dist,dist_flip)
p_dist_best = np.minimum(p_dist,p_dist_flip)
dist_best = dist_best * inputs_scale
p_dist_best = p_dist_best * inputs_scale
loss_3d_p1 = dist_best.mean()
loss_3d_p2 = p_dist_best.mean()
epoch_error_p1 += inputs_3d.shape[0] * loss_3d_p1
epoch_error_p2 += inputs_3d.shape[0] * loss_3d_p2
N += inputs_3d.shape[0]
losses_3d_valid_p1.append(epoch_error_p1 / N)
losses_3d_valid_p2.append(epoch_error_p2 / N)
elapsed = (time() - start_time) / 60
if args.no_eval:
print('[%d] time %.2f lr %f reprojection_loss %f consistent loss %f' % (
epoch + 1,
elapsed,
lr,
losses_3d_train_rp[-1] * 1000,
losses_3d_train_cs[-1] * 1000,))
else:
print('[%d] time %.2f lr %f reprojection_loss %f consistent loss %f MPJPE %f P-MPJPE %f' % (
epoch + 1,
elapsed,
lr,
losses_3d_train_rp[-1] * 1000,
losses_3d_train_cs[-1] * 1000,
losses_3d_valid_p1[-1] * 1000,
losses_3d_valid_p2[-1] * 1000))
# Decay learning rate exponentially
if (epoch+1) % args.epoch_lr_decay == 0:
lr *= lr_decay
for param_group in optimizer.param_groups:
param_group['lr'] *= lr_decay
epoch += 1
# if (epoch+1) == 15 or (epoch+1) == 25:
# lr *= 0.1
# for param_group in optimizer.param_groups:
# param_group['lr'] *= 0.1
# Save checkpoint if necessary
if epoch >= 1:
# chk_path = os.path.join('checkpoint/model_depth_mygcn', 'epoch2_{}.bin'.format(epoch))
chk_path = os.path.join(args.checkpoint, 'stu_model_epoch_{}.bin'.format(epoch))
print('Saving checkpoint to', chk_path)
torch.save({
'epoch': epoch,
'lr': lr,
'optimizer': optimizer.state_dict(),
'model_pos': model_depth_train.state_dict(),
}, chk_path)