-
Notifications
You must be signed in to change notification settings - Fork 44
/
Copy pathraw.rs
824 lines (715 loc) · 32.8 KB
/
raw.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
use alloc::alloc::Layout as StdLayout;
use core::cell::UnsafeCell;
use core::future::Future;
use core::mem::{self, ManuallyDrop};
use core::pin::Pin;
use core::ptr::NonNull;
use core::task::{Context, Poll, RawWaker, RawWakerVTable, Waker};
#[cfg(not(feature = "portable-atomic"))]
use core::sync::atomic::AtomicUsize;
use core::sync::atomic::Ordering;
#[cfg(feature = "portable-atomic")]
use portable_atomic::AtomicUsize;
use crate::header::Header;
use crate::runnable::{Schedule, ScheduleInfo};
use crate::state::*;
use crate::utils::{abort, abort_on_panic, max, Layout};
use crate::Runnable;
#[cfg(feature = "std")]
pub(crate) type Panic = alloc::boxed::Box<dyn core::any::Any + Send + 'static>;
#[cfg(not(feature = "std"))]
pub(crate) type Panic = core::convert::Infallible;
/// The vtable for a task.
pub(crate) struct TaskVTable {
/// Schedules the task.
pub(crate) schedule: unsafe fn(*const (), ScheduleInfo),
/// Drops the future inside the task.
pub(crate) drop_future: unsafe fn(*const ()),
/// Returns a pointer to the output stored after completion.
pub(crate) get_output: unsafe fn(*const ()) -> *const (),
/// Drops the task reference (`Runnable` or `Waker`).
pub(crate) drop_ref: unsafe fn(ptr: *const ()),
/// Destroys the task.
pub(crate) destroy: unsafe fn(*const ()),
/// Runs the task.
pub(crate) run: unsafe fn(*const ()) -> bool,
/// Creates a new waker associated with the task.
pub(crate) clone_waker: unsafe fn(ptr: *const ()) -> RawWaker,
/// The memory layout of the task. This information enables
/// debuggers to decode raw task memory blobs. Do not remove
/// the field, even if it appears to be unused.
#[allow(unused)]
pub(crate) layout_info: &'static TaskLayout,
}
/// Memory layout of a task.
///
/// This struct contains the following information:
///
/// 1. How to allocate and deallocate the task.
/// 2. How to access the fields inside the task.
#[derive(Clone, Copy)]
pub(crate) struct TaskLayout {
/// Memory layout of the whole task.
pub(crate) layout: StdLayout,
/// Offset into the task at which the schedule function is stored.
pub(crate) offset_s: usize,
/// Offset into the task at which the future is stored.
pub(crate) offset_f: usize,
/// Offset into the task at which the output is stored.
pub(crate) offset_r: usize,
}
/// Raw pointers to the fields inside a task.
pub(crate) struct RawTask<F, T, S, M> {
/// The task header.
pub(crate) header: *const Header<M>,
/// The schedule function.
pub(crate) schedule: *const S,
/// The future.
pub(crate) future: *mut F,
/// The output of the future.
pub(crate) output: *mut Result<T, Panic>,
}
impl<F, T, S, M> Copy for RawTask<F, T, S, M> {}
impl<F, T, S, M> Clone for RawTask<F, T, S, M> {
fn clone(&self) -> Self {
*self
}
}
impl<F, T, S, M> RawTask<F, T, S, M> {
const TASK_LAYOUT: TaskLayout = Self::eval_task_layout();
/// Computes the memory layout for a task.
#[inline]
const fn eval_task_layout() -> TaskLayout {
// Compute the layouts for `Header`, `S`, `F`, and `T`.
let layout_header = Layout::new::<Header<M>>();
let layout_s = Layout::new::<S>();
let layout_f = Layout::new::<F>();
let layout_r = Layout::new::<Result<T, Panic>>();
// Compute the layout for `union { F, T }`.
let size_union = max(layout_f.size(), layout_r.size());
let align_union = max(layout_f.align(), layout_r.align());
let layout_union = Layout::from_size_align(size_union, align_union);
// Compute the layout for `Header` followed `S` and `union { F, T }`.
let layout = layout_header;
let (layout, offset_s) = leap_unwrap!(layout.extend(layout_s));
let (layout, offset_union) = leap_unwrap!(layout.extend(layout_union));
let offset_f = offset_union;
let offset_r = offset_union;
TaskLayout {
// SAFETY: layout came from a Layout::extend call, which dynamically checks the
// invariants for StdLayout and returns None if they are not met. The leap_unwrap!
// would have panicked before this point.
layout: unsafe { layout.into_std() },
offset_s,
offset_f,
offset_r,
}
}
}
impl<F, T, S, M> RawTask<F, T, S, M>
where
F: Future<Output = T>,
S: Schedule<M>,
{
const RAW_WAKER_VTABLE: RawWakerVTable = RawWakerVTable::new(
Self::clone_waker,
Self::wake,
Self::wake_by_ref,
Self::drop_waker,
);
/// Allocates a task with the given `future` and `schedule` function.
///
/// It is assumed that initially only the `Runnable` and the `Task` exist.
pub(crate) fn allocate<'a, Gen: FnOnce(&'a M) -> F>(
future: Gen,
schedule: S,
builder: crate::Builder<M>,
) -> NonNull<()>
where
F: 'a,
M: 'a,
{
// Compute the layout of the task for allocation. Abort if the computation fails.
//
// n.b. notgull: task_layout now automatically aborts instead of panicking
let task_layout = Self::task_layout();
unsafe {
// Allocate enough space for the entire task.
let ptr = match NonNull::new(alloc::alloc::alloc(task_layout.layout) as *mut ()) {
None => abort(),
Some(p) => p,
};
// SAFETY: task_layout.layout has the correct layout for a C-style struct of Header
// followed by S followed by union { F, T }.
let raw = Self::from_ptr(ptr.as_ptr());
let crate::Builder {
metadata,
#[cfg(feature = "std")]
propagate_panic,
} = builder;
// Write the header as the first field of the task.
// SAFETY: This write it OK because it's through a mutable pointer to a Header<M> that
// is definitely properly aligned and points to enough memory for a Header<M>. We
// didn't pass our pointer through any const references or other const-ifying
// operations so the provenance is good.
(raw.header as *mut Header<M>).write(Header {
state: AtomicUsize::new(SCHEDULED | TASK | REFERENCE),
awaiter: UnsafeCell::new(None),
vtable: &TaskVTable {
schedule: Self::schedule,
drop_future: Self::drop_future,
get_output: Self::get_output,
drop_ref: Self::drop_ref,
destroy: Self::destroy,
run: Self::run,
clone_waker: Self::clone_waker,
layout_info: &Self::TASK_LAYOUT,
},
metadata,
#[cfg(feature = "std")]
propagate_panic,
});
// Write the schedule function as the third field of the task.
// SAFETY: raw.schedule is also non-null, properly aligned, valid for writes of size
// size_of::<Schedule>().
(raw.schedule as *mut S).write(schedule);
// Generate the future, now that the metadata has been pinned in place.
// SAFETY: Dereferencing raw.header is OK because it's properly initialized since we
// wrote to it.
let future = abort_on_panic(|| future(&(*raw.header).metadata));
// Write the future as the fourth field of the task.
// SAFETY: This write is OK because raw.future is non-null, properly-aligned, and valid
// for writes of size F. Because we're not casting anything here we know it's the right
// type.
raw.future.write(future);
ptr
}
}
/// Creates a `RawTask` from a raw task pointer.
///
/// ptr must point to a region that has a size and alignment matching task layout, since doing
/// pointer arithmetic that leaves the region or creating unaligned pointers is UB.
#[inline]
pub(crate) unsafe fn from_ptr(ptr: *const ()) -> Self {
let task_layout = Self::task_layout();
let p = ptr as *const u8;
unsafe {
// SAFETY: We're just picking apart the given pointer into its constituent fields.
// These do correctly correspond to the fields as laid out in task_layout.
Self {
header: p as *const Header<M>,
schedule: p.add(task_layout.offset_s) as *const S,
future: p.add(task_layout.offset_f) as *mut F,
output: p.add(task_layout.offset_r) as *mut Result<T, Panic>,
}
}
}
/// Returns the layout of the task.
#[inline]
fn task_layout() -> TaskLayout {
Self::TASK_LAYOUT
}
/// Wakes a waker.
///
/// Assumes ptr points to a valid task.
unsafe fn wake(ptr: *const ()) {
// This is just an optimization. If the schedule function has captured variables, then
// we'll do less reference counting if we wake the waker by reference and then drop it.
if mem::size_of::<S>() > 0 {
Self::wake_by_ref(ptr);
Self::drop_waker(ptr);
return;
}
let raw = Self::from_ptr(ptr);
// SAFETY: This is just loading the state. Note that this does implicitly create an
// &AtomicUsize, which is intentional.
let mut state = (*raw.header).state.load(Ordering::Acquire);
loop {
// If the task is completed or closed, it can't be woken up.
if state & (COMPLETED | CLOSED) != 0 {
// Drop the waker.
Self::drop_waker(ptr);
break;
}
// If the task is already scheduled, we just need to synchronize with the thread that
// will run the task by "publishing" our current view of the memory.
if state & SCHEDULED != 0 {
// Update the state without actually modifying it.
match (*raw.header).state.compare_exchange_weak(
state,
state,
Ordering::AcqRel,
Ordering::Acquire,
) {
Ok(_) => {
// Drop the waker.
Self::drop_waker(ptr);
break;
}
Err(s) => state = s,
}
} else {
// Mark the task as scheduled.
match (*raw.header).state.compare_exchange_weak(
state,
state | SCHEDULED,
Ordering::AcqRel,
Ordering::Acquire,
) {
Ok(_) => {
// If the task is not yet scheduled and isn't currently running, now is the
// time to schedule it.
if state & RUNNING == 0 {
// Schedule the task.
Self::schedule(ptr, ScheduleInfo::new(false));
} else {
// Drop the waker.
Self::drop_waker(ptr);
}
break;
}
Err(s) => state = s,
}
}
}
}
/// Wakes a waker by reference.
///
/// Assumes ptr points to a valid task.
unsafe fn wake_by_ref(ptr: *const ()) {
let raw = Self::from_ptr(ptr);
let mut state = (*raw.header).state.load(Ordering::Acquire);
loop {
// If the task is completed or closed, it can't be woken up.
if state & (COMPLETED | CLOSED) != 0 {
break;
}
// If the task is already scheduled, we just need to synchronize with the thread that
// will run the task by "publishing" our current view of the memory.
if state & SCHEDULED != 0 {
// Update the state without actually modifying it.
match (*raw.header).state.compare_exchange_weak(
state,
state,
Ordering::AcqRel,
Ordering::Acquire,
) {
Ok(_) => break,
Err(s) => state = s,
}
} else {
// If the task is not running, we can schedule right away.
let new = if state & RUNNING == 0 {
(state | SCHEDULED) + REFERENCE
} else {
state | SCHEDULED
};
// Mark the task as scheduled.
match (*raw.header).state.compare_exchange_weak(
state,
new,
Ordering::AcqRel,
Ordering::Acquire,
) {
Ok(_) => {
// If the task is not running, now is the time to schedule.
if state & RUNNING == 0 {
// If the reference count overflowed, abort.
if state > isize::MAX as usize {
abort();
}
// Schedule the task. There is no need to call `Self::schedule(ptr)`
// because the schedule function cannot be destroyed while the waker is
// still alive.
let task = Runnable::from_raw(NonNull::new_unchecked(ptr as *mut ()));
// SAFETY: The task is still alive, so we can call its schedule
// function.
(*raw.schedule).schedule(task, ScheduleInfo::new(false));
}
break;
}
Err(s) => state = s,
}
}
}
}
/// Clones a waker.
unsafe fn clone_waker(ptr: *const ()) -> RawWaker {
let raw = Self::from_ptr(ptr);
// Increment the reference count. With any kind of reference-counted data structure,
// relaxed ordering is appropriate when incrementing the counter.
let state = (*raw.header).state.fetch_add(REFERENCE, Ordering::Relaxed);
// If the reference count overflowed, abort.
if state > isize::MAX as usize {
abort();
}
RawWaker::new(ptr, &Self::RAW_WAKER_VTABLE)
}
/// Drops a waker.
///
/// This function will decrement the reference count. If it drops down to zero, the associated
/// `Task` has been dropped too, and the task has not been completed, then it will get
/// scheduled one more time so that its future gets dropped by the executor.
#[inline]
unsafe fn drop_waker(ptr: *const ()) {
let raw = Self::from_ptr(ptr);
// Decrement the reference count.
let new = (*raw.header).state.fetch_sub(REFERENCE, Ordering::AcqRel) - REFERENCE;
// If this was the last reference to the task and the `Task` has been dropped too,
// then we need to decide how to destroy the task.
if new & !(REFERENCE - 1) == 0 && new & TASK == 0 {
if new & (COMPLETED | CLOSED) == 0 {
// If the task was not completed nor closed, close it and schedule one more time so
// that its future gets dropped by the executor.
(*raw.header)
.state
.store(SCHEDULED | CLOSED | REFERENCE, Ordering::Release);
// SAFETY: ptr still points to a valid task even though its refcount has dropped
// to zero.
// NOTE: We should make sure that the executor is properly dropping scheduled tasks
// with a refcount of zero.
Self::schedule(ptr, ScheduleInfo::new(false));
} else {
// Otherwise, destroy the task right away.
// NOTE: This isn't going to drop the output/result from the future. We have to
// have already dealt with it, so whoever is calling drop_waker needs to be
// checked. It looks like whoever sets the TASK bit to zero is affirming that they
// have moved or dropped the output/result.
Self::destroy(ptr);
}
}
}
/// Drops a task reference (`Runnable` or `Waker`).
///
/// This function will decrement the reference count. If it drops down to zero and the
/// associated `Task` handle has been dropped too, then the task gets destroyed.
#[inline]
unsafe fn drop_ref(ptr: *const ()) {
let raw = Self::from_ptr(ptr);
// Decrement the reference count.
let new = (*raw.header).state.fetch_sub(REFERENCE, Ordering::AcqRel) - REFERENCE;
// If this was the last reference to the task and the `Task` has been dropped too,
// then destroy the task.
if new & !(REFERENCE - 1) == 0 && new & TASK == 0 {
Self::destroy(ptr);
}
}
/// Schedules a task for running.
///
/// This function doesn't modify the state of the task. It only passes the task reference to
/// its schedule function.
unsafe fn schedule(ptr: *const (), info: ScheduleInfo) {
let raw = Self::from_ptr(ptr);
// If the schedule function has captured variables, create a temporary waker that prevents
// the task from getting deallocated while the function is being invoked.
let _waker;
if mem::size_of::<S>() > 0 {
_waker = Waker::from_raw(Self::clone_waker(ptr));
}
let task = Runnable::from_raw(NonNull::new_unchecked(ptr as *mut ()));
// NOTE: The schedule function has to drop tasks with a refcount of zero. That's not
// happening in this function, so it has to be happening in the schedule member function.
(*raw.schedule).schedule(task, info);
}
/// Drops the future inside a task.
#[inline]
unsafe fn drop_future(ptr: *const ()) {
let raw = Self::from_ptr(ptr);
// We need a safeguard against panics because the destructor can panic.
abort_on_panic(|| {
raw.future.drop_in_place();
})
}
/// Returns a pointer to the output inside a task.
unsafe fn get_output(ptr: *const ()) -> *const () {
let raw = Self::from_ptr(ptr);
raw.output as *const ()
}
/// Cleans up task's resources and deallocates it.
///
/// The schedule function will be dropped, and the task will then get deallocated.
/// The task must be closed before this function is called.
///
/// NOTE: Whoever calls this function has to have already dealt with the return value of the
/// future or its error if it failed. We are not going to drop it!
#[inline]
unsafe fn destroy(ptr: *const ()) {
let raw = Self::from_ptr(ptr);
let task_layout = Self::task_layout();
// We need a safeguard against panics because destructors can panic.
abort_on_panic(|| {
// Drop the header along with the metadata.
// SAFETY: This points to a valid Header<M> that we have permission to move out of and
// drop.
(raw.header as *mut Header<M>).drop_in_place();
// Drop the schedule function.
// SAFETY: This points to a valid S that we have permission to move out of and drop.
(raw.schedule as *mut S).drop_in_place();
});
// Finally, deallocate the memory reserved by the task.
// SAFETY: We know that ptr was allocated with layout task_layout.layout, so deallocating
// it with the same layout is correct.
alloc::alloc::dealloc(ptr as *mut u8, task_layout.layout);
}
/// Runs a task.
///
/// If polling its future panics, the task will be closed and the panic will be propagated into
/// the caller.
unsafe fn run(ptr: *const ()) -> bool {
// SAFETY: As long as it's a pointer to a valid task, we can get the raw form of it.
let raw = Self::from_ptr(ptr);
// Create a context from the raw task pointer and the vtable inside the its header.
// SAFETY: The implementation of RAW_WAKER_VTABLE is correct.
let waker = ManuallyDrop::new(Waker::from_raw(RawWaker::new(ptr, &Self::RAW_WAKER_VTABLE)));
let cx = &mut Context::from_waker(&waker);
let mut state = (*raw.header).state.load(Ordering::Acquire);
// Update the task's state before polling its future.
loop {
// If the task has already been closed, drop the task reference and return.
if state & CLOSED != 0 {
// Drop the future.
Self::drop_future(ptr);
// Mark the task as unscheduled.
let state = (*raw.header).state.fetch_and(!SCHEDULED, Ordering::AcqRel);
// Take the awaiter out.
let mut awaiter = None;
if state & AWAITER != 0 {
awaiter = (*raw.header).take(None);
}
// Drop the task reference.
// SAFETY: This pointer is definitely alive. The Waker that is registered into the
// executor holds it.
Self::drop_ref(ptr);
// Notify the awaiter that the future has been dropped.
if let Some(w) = awaiter {
abort_on_panic(|| w.wake());
}
return false;
}
// Mark the task as unscheduled and running.
match (*raw.header).state.compare_exchange_weak(
state,
(state & !SCHEDULED) | RUNNING,
Ordering::AcqRel,
Ordering::Acquire,
) {
Ok(_) => {
// Update the state because we're continuing with polling the future.
state = (state & !SCHEDULED) | RUNNING;
break;
}
Err(s) => state = s,
}
}
// Poll the inner future, but surround it with a guard that closes the task in case polling
// panics.
// If available, we should also try to catch the panic so that it is propagated correctly.
let guard = Guard(raw);
// Panic propagation is not available for no_std.
#[cfg(not(feature = "std"))]
let poll = <F as Future>::poll(Pin::new_unchecked(&mut *raw.future), cx).map(Ok);
#[cfg(feature = "std")]
let poll = {
// Check if we should propagate panics.
if (*raw.header).propagate_panic {
// Use catch_unwind to catch the panic.
match std::panic::catch_unwind(std::panic::AssertUnwindSafe(|| {
<F as Future>::poll(Pin::new_unchecked(&mut *raw.future), cx)
})) {
Ok(Poll::Ready(v)) => Poll::Ready(Ok(v)),
Ok(Poll::Pending) => Poll::Pending,
Err(e) => Poll::Ready(Err(e)),
}
} else {
<F as Future>::poll(Pin::new_unchecked(&mut *raw.future), cx).map(Ok)
}
};
mem::forget(guard);
match poll {
Poll::Ready(out) => {
// Replace the future with its output.
// SAFETY: We have exclusive access to the task so we can drop the future for it.
Self::drop_future(ptr);
// SAFETY: raw.output definitely points to a valid memory location to hold the
// Output type of the future.
raw.output.write(out);
// The task is now completed.
loop {
// If the `Task` is dropped, we'll need to close it and drop the output.
let new = if state & TASK == 0 {
(state & !RUNNING & !SCHEDULED) | COMPLETED | CLOSED
} else {
(state & !RUNNING & !SCHEDULED) | COMPLETED
};
// Mark the task as not running and completed.
match (*raw.header).state.compare_exchange_weak(
state,
new,
Ordering::AcqRel,
Ordering::Acquire,
) {
Ok(_) => {
// If the `Task` is dropped or if the task was closed while running,
// now it's time to drop the output.
if state & TASK == 0 || state & CLOSED != 0 {
// Drop the output.
abort_on_panic(|| raw.output.drop_in_place());
}
// Take the awaiter out.
let mut awaiter = None;
if state & AWAITER != 0 {
// SAFETY: This is safe for the same reasons as we said earlier.
awaiter = (*raw.header).take(None);
}
// Drop the task reference.
// SAFETY: We "own" the ref to this task and are allowed to drop it.
Self::drop_ref(ptr);
// Notify the awaiter that the future has been dropped.
if let Some(w) = awaiter {
abort_on_panic(|| w.wake());
}
break;
}
Err(s) => state = s,
}
}
}
Poll::Pending => {
let mut future_dropped = false;
// The task is still not completed.
loop {
// If the task was closed while running, we'll need to unschedule in case it
// was woken up and then destroy it.
let new = if state & CLOSED != 0 {
state & !RUNNING & !SCHEDULED
} else {
state & !RUNNING
};
if state & CLOSED != 0 && !future_dropped {
// The thread that closed the task didn't drop the future because it was
// running so now it's our responsibility to do so.
// SAFETY: This is corroborated by header.rs where they state that closing
// a task doesn't drop the future, it just marks it closed and puts it back
// in the polling queue so a poller can drop it.
Self::drop_future(ptr);
future_dropped = true;
}
// Mark the task as not running.
match (*raw.header).state.compare_exchange_weak(
state,
new,
Ordering::AcqRel,
Ordering::Acquire,
) {
Ok(state) => {
// If the task was closed while running, we need to notify the awaiter.
// If the task was woken up while running, we need to schedule it.
// Otherwise, we just drop the task reference.
if state & CLOSED != 0 {
// Take the awaiter out.
let mut awaiter = None;
if state & AWAITER != 0 {
awaiter = (*raw.header).take(None);
}
// Drop the task reference.
// SAFETY: We're allowed to drop the ref as stated earlier. We
// checked that it won't accidentally be double-dropped.
Self::drop_ref(ptr);
// Notify the awaiter that the future has been dropped.
if let Some(w) = awaiter {
abort_on_panic(|| w.wake());
}
} else if state & SCHEDULED != 0 {
// The thread that woke the task up didn't reschedule it because
// it was running so now it's our responsibility to do so.
// SAFETY: ptr definitely points to a valid task that hasn't been
// dropped. It has its SCHEDULED bit set.
Self::schedule(ptr, ScheduleInfo::new(true));
return true;
} else {
// Drop the task reference.
// SAFETY: We're still allowed.
Self::drop_ref(ptr);
}
break;
}
Err(s) => state = s,
}
}
}
}
return false;
/// A guard that closes the task if polling its future panics.
struct Guard<F, T, S, M>(RawTask<F, T, S, M>)
where
F: Future<Output = T>,
S: Schedule<M>;
impl<F, T, S, M> Drop for Guard<F, T, S, M>
where
F: Future<Output = T>,
S: Schedule<M>,
{
fn drop(&mut self) {
let raw = self.0;
let ptr = raw.header as *const ();
unsafe {
let mut state = (*raw.header).state.load(Ordering::Acquire);
loop {
// If the task was closed while running, then unschedule it, drop its
// future, and drop the task reference.
if state & CLOSED != 0 {
// The thread that closed the task didn't drop the future because it
// was running so now it's our responsibility to do so.
// SAFETY: If poll panicked then the thread didn't drop the future.
RawTask::<F, T, S, M>::drop_future(ptr);
// Mark the task as not running and not scheduled.
(*raw.header)
.state
.fetch_and(!RUNNING & !SCHEDULED, Ordering::AcqRel);
// Take the awaiter out.
let mut awaiter = None;
if state & AWAITER != 0 {
awaiter = (*raw.header).take(None);
}
// Drop the task reference.
// SAFETY: We still have permission to drop a ref.
RawTask::<F, T, S, M>::drop_ref(ptr);
// Notify the awaiter that the future has been dropped.
if let Some(w) = awaiter {
abort_on_panic(|| w.wake());
}
break;
}
// Mark the task as not running, not scheduled, and closed.
match (*raw.header).state.compare_exchange_weak(
state,
(state & !RUNNING & !SCHEDULED) | CLOSED,
Ordering::AcqRel,
Ordering::Acquire,
) {
Ok(state) => {
// Drop the future because the task is now closed.
// SAFETY: This is effectively the same situation as earlier.
// TODO: DRY this up by refactoring this.
RawTask::<F, T, S, M>::drop_future(ptr);
// Take the awaiter out.
let mut awaiter = None;
if state & AWAITER != 0 {
awaiter = (*raw.header).take(None);
}
// Drop the task reference.
RawTask::<F, T, S, M>::drop_ref(ptr);
// Notify the awaiter that the future has been dropped.
if let Some(w) = awaiter {
abort_on_panic(|| w.wake());
}
break;
}
Err(s) => state = s,
}
}
}
}
}
}
}