-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathtest.py
292 lines (243 loc) · 8.74 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
import os
from pathlib import Path
from tqdm import tqdm
import natsort
import torch
from torch.utils.data import DataLoader
import torch.nn as nn
from utils import utils_html
from utils.utils_train import get_dataset, get_fixed_language_model, \
get_vae_model, get_tokenizer
from utils.utils_train import visualize_test as visualize
from utils.utils_train import visualize_long
from utils.utils_eval import evaluate, evaluate_clip
from utils.utils import exists, set_requires_grad, sample_data, \
mean_pooling, seed_everything
def model_to_gpu(model, gpu, is_train):
model.cuda()
model = nn.DataParallel(model)
return model
def main():
# argument parsing
from utils.utils_args import process_args
args = process_args()
main_worker(args, )
@torch.no_grad()
def main_worker(args):
args.gpu = 0
torch.backends.cudnn.benchmark = True
assert Path(args.image_text_folder).exists(
), f'The path {args.image_text_folder} was not found.'
seed_everything(args.seed)
args.deterministic = True # NOTE: make everything deterministic
if args.eval_mode == 'eval':
args.batch_size = 16 # make samples reproducible
# logging
dalle_path = Path(args.dalle_path) if exists(args.dalle_path) else None
if args.dalle_path is None:
checkpoints = natsort.natsorted(
os.listdir(str(Path(args.log_root) / args.name / 'weights')))
assert len(checkpoints) > 0, f'Nothing to resume from.'
dalle_path = Path(
args.log_root
) / args.name / 'weights' / checkpoints[-1] / 'dalle.pt'
args.dalle_path = dalle_path
args.name += args.name_suffix # TODO: remove this
resume = False
log_dir = Path(args.log_root) / args.name
log_sample_dir = log_dir / 'samples'
args.log_dir = log_dir
args.log_sample_dir = log_sample_dir
assert args.dalle_path
which_ckpt = str(dalle_path).split('/')[-2]
if args.eval_mode == 'eval':
args.log_metric_dir = log_dir / 'metrics' / which_ckpt
os.makedirs(args.log_metric_dir, exist_ok=True)
os.makedirs(log_dir, exist_ok=True)
os.makedirs(log_dir / 'samples', exist_ok=True)
webpage = None
if args.use_html:
webpage = utils_html.initialize_webpage(log_dir / 'web',
'DALLE: ' + args.name, resume)
# tokenizer
if args.fixed_language_model is not None:
tokenizer2, language_model, text_feature_dim, encode_text = get_fixed_language_model(
args)
language_model = language_model.cuda()
tokenizer = None # TODO: avoid tokenization and get raw text
else:
language_model, tokenizer2 = None, None
text_feature_dim = 0
tokenizer = get_tokenizer(args)
# model path
if args.vae_path == '':
args.vae_path = None
if args.cvae_path == '':
args.cvae_path = None
args.use_cvae = args.use_cvae or args.cvae_path is not None
model_weights = None
start_iter = 0
# get vae model
vae, _ = get_vae_model(args.which_vae,
vae_path=args.vae_path,
image_size=args.image_size)
cvae = None
if args.use_cvae:
cvae, _ = get_vae_model(args.which_vae,
vae_path=args.cvae_path,
image_size=args.image_size)
dalle_params = dict(
num_text_tokens=tokenizer.vocab_size if tokenizer else 0,
text_seq_len=args.text_seq_len,
dim=args.dim,
text_feature_dim=text_feature_dim,
fixed_language_model=args.fixed_language_model,
text_emb_bottleneck=args.text_emb_bottleneck,
which_transformer=args.which_transformer,
num_targets=args.num_targets,
num_visuals=args.num_visuals,
use_separate_visual_emb=args.use_separate_visual_emb,
insert_sep=args.insert_sep,
openai_clip_path=args.openai_clip_model_path,
)
assert exists(dalle_path), 'DALLE model file does not exist'
ckpt = torch.load(str(dalle_path))
model_weights = ckpt['weights']
image_size = args.image_size or vae.image_size
args.image_size = vae.image_size = image_size
if cvae is not None:
cvae.image_size = image_size
# initialize DALL-E / BERT
if args.ar:
from mmvid_pytorch.dalle_artv import DALLE
dalle = DALLE(vae=vae, cvae=cvae, **dalle_params)
else:
from mmvid_pytorch.dalle_bert import BERT
dalle = BERT(vae=vae, cvae=cvae, **dalle_params)
if args.fp16:
dalle = dalle.half()
if model_weights is not None:
dalle.load_state_dict(model_weights, strict=False)
set_requires_grad(dalle, False)
dalle = model_to_gpu(dalle, args.gpu, True)
dalle_module = dalle.module
args.is_shuffle = True
ds = get_dataset(args, tokenizer)
assert len(ds) > 0, 'dataset is empty'
print(f'{len(ds)} image-text pairs found for training')
data_sampler = None
dl = DataLoader(
ds,
batch_size=args.batch_size,
shuffle=False,
drop_last=True,
sampler=data_sampler,
num_workers=0,
pin_memory=False,
)
dl_iter = sample_data(dl, data_sampler)
if args.eval_mode == 'eval': # evaluate quantitative metrics
if 'fvd_prd' in args.eval_metric:
evaluate(
args,
dalle_module,
tokenizer,
tokenizer2,
language_model,
dl_iter,
)
if 'clip' in args.eval_metric:
evaluate_clip(
args,
dalle_module,
tokenizer,
tokenizer2,
language_model,
dl_iter,
)
exit(0)
pbar = tqdm(range(args.iters),
initial=start_iter,
dynamic_ncols=True,
smoothing=0.01)
for idx in pbar:
i = idx + start_iter
which_iter = f"{i:07d}"
if i > args.iters:
print('done!')
break
text_neg, visuals_neg = None, None
if args.negvc:
text, frames, visuals, visuals_neg, text_neg = next(dl_iter)
visuals_neg, text_neg = map(lambda t: t.cuda(),
(visuals_neg, text_neg))
else:
text, frames, visuals = next(dl_iter) # frames [B, T, C, H, W]
if args.visual and len(visuals.shape) == 4:
assert args.num_visuals == 1
visuals = visuals.unsqueeze(1)
if args.fp16:
frames = frames.half()
frames, visuals = map(lambda t: t.cuda(), (frames, visuals))
if args.fixed_language_model is not None:
text_description = text
with torch.no_grad():
encoded_input = tokenizer2(
text_description,
return_tensors='pt',
padding=True,
truncation=True,
max_length=args.text_seq_len,
)
encoded_input = {
'input_ids': encoded_input['input_ids'].cuda(),
'attention_mask': encoded_input['attention_mask'].cuda(),
}
model_output = language_model(**encoded_input)
text = mean_pooling(model_output,
encoded_input['attention_mask'])
else:
text = text.cuda()
text_description = None
# =================== visualization ======================
if args.eval_mode == 'long':
visualize_long(
args,
dalle_module,
tokenizer,
{
'description': text_description,
'text': text,
'text_neg': text_neg,
'target': frames,
'visual': visuals,
'visual_neg': visuals_neg,
},
which_iter,
webpage,
args.description,
tokenizer2,
language_model,
)
else:
visualize(
args,
dalle_module,
tokenizer,
{
'description': text_description,
'text': text,
'text_neg': text_neg,
'target': frames,
'visual': visuals,
'visual_neg': visuals_neg,
},
which_iter,
webpage,
args.description,
tokenizer2,
language_model,
)
# ========================================================
if __name__ == "__main__":
main()