-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathddpg_agent.py
239 lines (187 loc) · 9.71 KB
/
ddpg_agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
from typing import get_type_hints
import numpy as np
import random
import copy
from collections import namedtuple, deque
from pprint import pprint
from model import Actor, Critic
import torch
import torch.nn.functional as F
import torch.optim as optim
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
class Agent():
"""Interacts with and learns from the environment."""
def __init__(self, state_size, action_size, random_seed=0, noise_type="normal",
learn_every=16, n_learn=16, alpha_actor=1e-3, alpha_critic=1e-3,
batch_size=256, buffer_size=int(1e6), gamma=.99, tau=1e-3,
desired_distance=.7, scalar=.05, scalar_decay=.99,
normal_scalar=.25):
"""Initialize an Agent object.
Params
======
state_size (int): dimension of each state
action_size (int): dimension of each action
random_seed (int): random seed
"""
# save hyperparameters for print
self.hyperparameters = '\n'.join(f"{key:>17}: {value}" for key, value in locals().items() if key != 'self')
self.state_size = state_size
self.action_size = action_size
self.learn_every = learn_every
self.n_learn = n_learn
self.batch_size = batch_size
self.gamma = gamma
self.tau = tau
self.noise_type = noise_type
# parameter noise
self.distances = []
self.desired_distance = desired_distance
self.scalar = scalar
self.scalar_decay = scalar_decay
# normal noise
self.normal_scalar = normal_scalar
# step counter
self.t = 0
# reset/seed all random generators
random.seed(random_seed)
np.random.seed(random_seed)
torch.manual_seed(random_seed)
# Actor Network (w/ Target Network)
self.actor_regular = Actor(state_size, action_size, random_seed).to(device)
self.actor_target = Actor(state_size, action_size, random_seed).to(device)
self.actor_optimizer = optim.Adam(self.actor_regular.parameters(), lr=alpha_actor)
# Critic Network (w/ Target Network)
self.critic_regular = Critic(state_size, action_size, random_seed).to(device)
self.critic_target = Critic(state_size, action_size, random_seed).to(device)
self.critic_optimizer = optim.Adam(self.critic_regular.parameters(), lr=alpha_critic)
self.actor_noised = Actor(state_size, action_size, random_seed).to(device)
# hard update to ensure that regular and target start with same values
self.soft_update(self.critic_regular, self.critic_target, 1.)
self.soft_update(self.actor_regular, self.actor_target, 1.)
# Ornstein–Uhlenbeck Process noise
if noise_type == "ou":
self.ou_noise = OUNoise(action_size)
# Replay memory
self.memory = ReplayBuffer(action_size, buffer_size, batch_size, random_seed)
def step(self, states, actions, rewards, next_states, dones):
"""Save experience in replay memory, and use random sample from buffer to learn."""
self.t += 1
# Save experience / reward
self.memory.add_multi(states, actions, rewards, next_states, dones)
if not (self.t % self.learn_every == 0 and len(self.memory) > self.batch_size):
return
for _ in range(self.n_learn):
experiences = self.memory.sample()
self.learn(experiences, self.gamma)
def act(self, state, add_noise=True):
"""Returns actions for given state as per current policy."""
state = torch.from_numpy(state).float().to(device)
self.actor_regular.eval()
self.actor_noised.eval()
with torch.no_grad():
action = self.actor_regular(state).cpu().data.numpy()
if add_noise:
if self.noise_type == "param":
# hard copy the actor_regular to actor_noised
self.actor_noised.load_state_dict(self.actor_regular.state_dict().copy())
# add noise to the copy
self.actor_noised.add_parameter_noise(self.scalar)
# get the next action values from the noised actor
action_noised = self.actor_noised(state).cpu().data.numpy()
# meassure the distance between the action values from the regular and
# the noised actor to adjust the amount of noise that will be added next round
distance = np.sqrt(np.mean(np.square(action-action_noised)))
# for stats and print only
self.distances.append(distance)
# adjust the amount of noise given to the actor_noised
if distance > self.desired_distance:
self.scalar *= self.scalar_decay
if distance < self.desired_distance:
self.scalar /= self.scalar_decay
# set the noised action as action
action = action_noised
elif self.noise_type == "ou":
action += self.ou_noise.sample()
else:
action += np.random.randn(self.action_size) * self.normal_scalar
self.actor_regular.train()
return np.clip(action, -1, 1)
# needed for ou noise only
def reset(self):
if hasattr(self, 'ou_noise'):
self.ou_noise.reset()
def learn(self, experiences, gamma):
states, actions, rewards, next_states, dones = experiences
# ---------------------------- update critic ---------------------------- #
# Get predicted next-state actions and Q values from target models
actions_next = self.actor_target(next_states)
Q_targets_next = self.critic_target(next_states, actions_next)
# Compute Q targets for current states (y_i)
Q_targets = rewards + (gamma * Q_targets_next * (1 - dones))
# Compute critic loss
Q_expected = self.critic_regular(states, actions)
critic_loss = F.mse_loss(Q_expected, Q_targets)
# Minimize the loss
self.critic_optimizer.zero_grad()
critic_loss.backward()
self.critic_optimizer.step()
# ---------------------------- update actor ---------------------------- #
# Compute actor loss
actions_pred = self.actor_regular(states)
actor_loss = -self.critic_regular(states, actions_pred).mean()
# Minimize the loss
self.actor_optimizer.zero_grad()
actor_loss.backward()
self.actor_optimizer.step()
# ----------------------- update target networks ----------------------- #
self.soft_update(self.critic_regular, self.critic_target, self.tau)
self.soft_update(self.actor_regular, self.actor_target, self.tau)
def soft_update(self, regular_model, target_model, tau):
for target_param, regular_param in zip(target_model.parameters(), regular_model.parameters()):
target_param.data.copy_(tau*regular_param.data + (1.0-tau)*target_param.data)
def __str__(self):
return f"\n{'#'*80}\n\nHyperparameters: \n\n{self.hyperparameters}\n\n{self.actor_regular}\n\n{self.critic_regular}\n\n{'#'*80}\n\n"
class OUNoise:
"""Ornstein-Uhlenbeck process."""
def __init__(self, size, mu=0., theta=0.15, sigma=0.2):
"""Initialize parameters and noise process."""
self.mu = mu * np.ones(size)
self.theta = theta
self.sigma = sigma
self.reset()
def reset(self):
"""Reset the internal state (= noise) to mean (mu)."""
self.state = copy.copy(self.mu)
def sample(self):
"""Update internal state and return it as a noise sample."""
x = self.state
dx = self.theta * (self.mu - x) + self.sigma * np.array([np.random.randn() for i in range(len(x))])
self.state = x + dx
return self.state
class ReplayBuffer:
"""Fixed-size buffer to store experience tuples."""
def __init__(self, action_size, buffer_size, batch_size, seed):
"""Initialize a ReplayBuffer object. """
self.action_size = action_size
self.memory = deque(maxlen=buffer_size) # internal memory (deque)
self.batch_size = batch_size
self.experience = namedtuple("Experience", field_names=["state", "action", "reward", "next_state", "done"])
def add(self, state, action, reward, next_state, done):
"""Add a new experience to memory."""
e = self.experience(state, action, reward, next_state, done)
self.memory.append(e)
def add_multi(self, states, actions, rewards, next_states, dones):
for state, action, reward, next_state, done in zip(states, actions, rewards, next_states, dones):
self.add(state, action, reward, next_state, done)
def sample(self):
"""Randomly sample a batch of experiences from memory."""
experiences = random.sample(self.memory, k=self.batch_size)
states = torch.from_numpy(np.vstack([e.state for e in experiences if e is not None])).float().to(device)
actions = torch.from_numpy(np.vstack([e.action for e in experiences if e is not None])).float().to(device)
rewards = torch.from_numpy(np.vstack([e.reward for e in experiences if e is not None])).float().to(device)
next_states = torch.from_numpy(np.vstack([e.next_state for e in experiences if e is not None])).float().to(device)
dones = torch.from_numpy(np.vstack([e.done for e in experiences if e is not None]).astype(np.uint8)).float().to(device)
return (states, actions, rewards, next_states, dones)
def __len__(self):
"""Return the current size of internal memory."""
return len(self.memory)