-
Notifications
You must be signed in to change notification settings - Fork 0
/
kfold_lstm.py
158 lines (111 loc) · 4.68 KB
/
kfold_lstm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
from keras.models import Model
from keras.layers import Input, MaxPooling2D, Dropout, Conv2D, Conv2DTranspose, TimeDistributed, Lambda, Bidirectional, ConvLSTM2D, add
from keras import backend as K
import tensorflow as tf
from keras.optimizers import RMSprop, Adam, SGD
from keras.losses import binary_crossentropy
from losses import *
import math
from datahandler import DataHandler
from model_provider import getModel
from generator import *
from params import *
from callbacks import getCallbacks
from kfold_data_loader import *
from tqdm import tqdm
import os
import skimage.io as io
from keras.models import *
from keras import backend as K
import argparse
import sys
import random
def lstmGenerator(images, masks, batch_size, pre_model, pre_graph):
reset = False
while True:
with pre_graph.as_default():
batch_features = []
batch_labels = []
for i in range(batch_size):
j = np.random.choice(len(images),1)[0]
if j == 0:
res1 = np.expand_dims(np.zeros(images[j].shape), axis=0)
else:
img1 = np.expand_dims(images[j-1], axis=0)
res1 = pre_model.predict(img1)
img2 = np.expand_dims(images[j], axis=0)
res2 = pre_model.predict(img2)
if j == images.shape[0]-1:
res3 = np.expand_dims(np.zeros(images[j].shape), axis=0)
else:
img3 = np.expand_dims(images[j+1], axis=0)
res3 = pre_model.predict(img3)
res = np.concatenate((res1,res2,res3), axis=0)
res[res>=0.5] = 1
res[res<0.5] = 0
mask = masks[j]
mask[mask == 255] = 1
batch_features.append(res)
batch_labels.append(mask)
yield np.array(batch_features), np.array(batch_labels)
def lstmModel():
with lstm_graph.as_default():
inputs = Input((3, 256, 256, 1))
original = Lambda(lambda x : x[:,1,:,:,:] * 0.5)(inputs)
pool = TimeDistributed(MaxPooling2D(pool_size=2))(inputs)
bclstm = Bidirectional(ConvLSTM2D(64, 3, return_sequences = True,
padding='same', activation = 'relu'))(pool)
bclstm = Bidirectional(ConvLSTM2D(64, 3, padding='same', activation = 'relu'))(bclstm)
up = Conv2DTranspose(64,3, strides=2, padding='same', activation = 'relu')(bclstm)
drop = Dropout(0.5)(up)
outputs = Conv2D(1, (1,1), activation = 'sigmoid')(drop)
outputs = Lambda(lambda x : x * 0.5)(outputs)
outputs = add([outputs, original])
model = Model(inputs = inputs, outputs = outputs)
model.compile(optimizer = Adam(lr = 1e-4),
loss = binary_crossentropy, metrics = [dice_coef])
return model
model_type = 'unet'
K.clear_session()
image_files, mask_files = load_data_files('data/kfold_data/')
skf = getKFolds(image_files, mask_files, n=10)
kfold_indices = []
for train_index, val_index in skf.split(image_files, mask_files):
kfold_indices.append({'train': train_index, 'val': val_index})
#Get data and generators
dh = DataHandler()
pre_graph = tf.get_default_graph()
for i in range(9,10):
with pre_graph.as_default():
pre_model = getModel(model_type)
pre_model.load_weights('logs/%s/kfold_%s/kfold_%s_dice_DA_K%d/kfold_%s_dice_DA_K%d_weights.h5'%(
model_type,model_type,model_type,i,model_type,i))
exp_name = 'kfold_%s_BiCLSTM_K%d'%(model_type, i)
#get parameters
params = getParams(exp_name, model_type, is_lstm=True)
#set common variables
epochs = 10
batch_size = 10
verbose = 1
tr_images, tr_masks, te_images, te_masks = dh.getKFoldData(image_files,
mask_files, kfold_indices[i])
train_generator = lstmGenerator(tr_images, tr_masks, batch_size, pre_model, pre_graph)
val_generator = lstmGenerator(te_images, te_masks, batch_size, pre_model, pre_graph)
#Get model and add weights
lstm_graph = tf.get_default_graph()
with lstm_graph.as_default():
model = lstmModel()
model_json = model.to_json()
with open(params['model_name'], "w") as json_file:
json_file.write(model_json)
Checkpoint, EarlyStop, ReduceLR, Logger, TenBoard = getCallbacks(params)
#Train the model
with lstm_graph.as_default():
history = model.fit_generator(train_generator,
epochs=epochs,
steps_per_epoch = 200,
validation_data = val_generator,
validation_steps = 20,
verbose = verbose,
max_queue_size = 1,
callbacks = [Checkpoint, TenBoard])