-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
58 lines (48 loc) · 1.61 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import time
import os
from options.test_options import TestOptions
opt = TestOptions().parse() # set CUDA_VISIBLE_DEVICES before import torch
import torch
import pickle
from data.data_loader import CreateDataLoader
from models.models import create_model
from util.visualizer import Visualizer
from pdb import set_trace as st
from util import html
from util.Vgg16 import Vgg16Part
from util.util import init_vgg16
from util.build_vocab import Vocabulary
opt.nThreads = 1 # test code only supports nThreads=1
opt.batchSize = 1 #test code only supports batchSize=1
opt.serial_batches = True # no shuffle
opt.lambda_p = 0
# Load vocabulary wrapper.
with open(opt.vocab_path, 'rb') as f:
vocab = pickle.load(f)
opt.vocab = vocab
opt.vocab_size = len(vocab)
print('load vgg16 models')
init_vgg16("vgg_model")
vgg_model = Vgg16Part()
vgg_model.load_state_dict(torch.load('vgg_model/vgg16.weight'))
if torch.cuda.is_available():
vgg_model.cuda()
opt.vgg_model = vgg_model
data_loader = CreateDataLoader(opt)
dataset = data_loader.load_data()
model = create_model(opt)
visualizer = Visualizer(opt)
# create website
web_dir = os.path.join(opt.results_dir, opt.name, '%s_%s' % (opt.phase, opt.which_epoch))
webpage = html.HTML(web_dir, 'Experiment = %s, Phase = %s, Epoch = %s' % (opt.name, opt.phase, opt.which_epoch))
# test
for i, data in enumerate(dataset):
if i >= opt.how_many:
break
model.set_input(data)
model.test()
visuals = model.get_current_visuals()
img_path = model.get_image_paths()
print('process image... %s' % img_path)
visualizer.save_images(webpage, visuals, img_path)
webpage.save()