-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
217 lines (162 loc) · 8.25 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import os, json
from collections import deque, Counter
import torch
import numpy as np
from torch.utils.tensorboard import SummaryWriter
from torch.nn.utils.clip_grad import clip_grad_value_
from tqdm import tqdm
from model.dqn import DQN
from dataloader import DataLoaderPFG, VOCLocalization, CombinedDataset
from utils.bbox import next_bbox_by_action, resize_bbox
from utils.loss import compute_td_loss
from utils.explore import epsilon_by_epoch
from utils.replay import ReplayBuffer
from utils.reward import reward_by_bboxes, init_hit_flags
from evaluate import evaluate
torch.backends.cudnn.benchmark = True
np.random.seed(42)
torch.manual_seed(42)
torch.cuda.manual_seed(42)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
USE_TB = False
CONFIG_PATH = './model_params'
MODEL_NAME = 'debug'
TOTAL_EPOCH = 10
def set_args():
args = dict()
# General settings
args['model_name'] = MODEL_NAME
args['voc2007_path'] = './data/voc2007'
args['voc2012_path'] = './data/voc2012'
args['display_intervals'] = 500
# Model settings
args['max_history'] = 3
args['num_actions'] = (5, 8)
# Training Settings
args['total_epochs'] = TOTAL_EPOCH
args['max_steps'] = 15
args['replay_capacity'] = 17000 * 15 # ~ len(trainval) * 15
args['replay_initial'] = 1000 * 15
args['target_update'] = 4000 # pics
args['evaluate_duration'] = 16000 # pics
args['gamma'] = 0.9
args['shuffle'] = False # whether shuffle voc_trainval
args['epsilon_duration'] = 8
args['lr'] = 3e-4
args['weight_decay'] = 1e-4
args['batch_size'] = 16
args['grad_clip'] = 1.
if not os.path.exists(os.path.join(CONFIG_PATH, MODEL_NAME)):
os.mkdir(os.path.join(CONFIG_PATH, MODEL_NAME))
with open(os.path.join(CONFIG_PATH, MODEL_NAME, 'config.json'), 'w') as f:
json.dump(args, f, indent=2)
return args
def save_model(dqn, optimizer, epoch, it, checkpoint_name=None):
states = {'config_path': os.path.join(CONFIG_PATH, MODEL_NAME, 'config.json'),
'dqn': dqn.state_dict(),
'optimizer': optimizer.state_dict(),
'epoch': epoch,
'it': it}
filename = os.path.join('model_params', MODEL_NAME,
'{}.pth.tar'.format(checkpoint_name if checkpoint_name else 'epoch_{}_iter_{}'.format(epoch, it)))
print('Saving checkpoint to {}'.format(filename))
torch.save(states, filename)
def train(args):
print('[INFO]: Model {} start training...'.format(MODEL_NAME))
# === init model ====
dqn = DQN(num_actions=args['num_actions'], max_history=args['max_history'])
target_dqn = DQN(num_actions=args['num_actions'], max_history=args['max_history'])
target_dqn.load_state_dict(dqn.state_dict())
# move model to GPU before optimizer
dqn = dqn.to(device)
target_dqn = target_dqn.to(device)
optimizer = torch.optim.RMSprop(dqn.parameters(), lr=args['lr'], weight_decay=args['weight_decay'])
# === prepare data loader ===
voc_loader = DataLoaderPFG(CombinedDataset(
VOCLocalization(args['voc2007_path'], year='2007', image_set='trainval',
download=False, transform=VOCLocalization.get_transform()),
VOCLocalization(args['voc2012_path'], year='2012', image_set='trainval',
download=False, transform=VOCLocalization.get_transform())),
batch_size=1, shuffle=args['shuffle'], num_workers=1, pin_memory=True,
collate_fn=VOCLocalization.collate_fn)
# use tensorboard to track the loss
if USE_TB:
writer = SummaryWriter()
# === start ====
replay_buffer = ReplayBuffer(args['replay_capacity'])
for epoch in range(args['total_epochs']):
epsilon = epsilon_by_epoch(epoch, duration=args['epsilon_duration'])
if USE_TB:
writer.add_scalar('training/epsilon', epsilon, epoch)
for it, (img_tensor, original_shape, bbox_gt_list, image_idx) in tqdm(enumerate(voc_loader),
total=len(voc_loader)):
img_tensor = img_tensor.to(device)
original_shape = original_shape[0]
bbox_gt_list = bbox_gt_list[0]
image_idx = image_idx[0]
cur_bbox = (0., 0., original_shape[0], original_shape[1])
scale_factors = (224. / original_shape[0], 224. / original_shape[1])
history_actions = deque(maxlen=args['max_history']) # deque of int
hit_flags = init_hit_flags(cur_bbox, bbox_gt_list) # use 0 instead of -1 in original paper
all_rewards = list()
all_actions = list()
state = (img_tensor, resize_bbox(cur_bbox, scale_factors), history_actions.copy())
for step in range(args['max_steps']):
# agent
action = dqn.act(state, epsilon)
# environment
next_bbox = next_bbox_by_action(cur_bbox, action, original_shape)
history_actions.append(action)
next_state = (img_tensor, resize_bbox(next_bbox, scale_factors), history_actions.copy())
reward, hit_flags = reward_by_bboxes(cur_bbox, next_bbox, bbox_gt_list, hit_flags)
# replay
replay_buffer.push(image_idx, state, action, reward, next_state, step == args['max_steps'] - 1)
if len(replay_buffer) >= args['replay_initial']:
loss = compute_td_loss(dqn, target_dqn, replay_buffer, args['batch_size'], args['gamma'], device)
if USE_TB:
writer.add_scalar('training/loss', loss.item(),
(epoch * len(voc_loader) + it) * args['max_steps'] + step)
optimizer.zero_grad()
loss.backward()
if args['grad_clip'] > 0:
clip_grad_value_(dqn.parameters(), args['grad_clip'])
optimizer.step()
# state transition
state = next_state
cur_bbox = next_bbox
# for display
all_rewards.append(reward)
all_actions.append(action)
# update target network
if len(replay_buffer) >= args['replay_initial'] and \
(epoch * len(voc_loader) + it) % args['target_update'] == 0:
# evaluate before update
if (epoch * len(voc_loader) + it) % args['evaluate_duration'] == 0:
save_model(dqn, optimizer, epoch, it)
pr_result, _, all_action_pred = evaluate(dqn, 'test', args, device, (0.3, 0.5, 0.7))
for thr in pr_result.keys():
print('[IOU threshold]: ', thr)
print('Precision: {:.4f} Recall: {:.4f}'.format(pr_result[thr]['P'], pr_result[thr]['R']))
print('[Action Pairs]: ')
c = Counter([tuple(ap) for aps in all_action_pred for ap in aps])
for k, v in c.items():
print(k, v)
#FIXME change epoch to iter
if USE_TB:
for thr in pr_result.keys():
writer.add_scalar('evaluating/Precision-th-{}'.format(thr), pr_result[thr]['P'], epoch)
writer.add_scalar('evaluating/Recall-th-{}'.format(thr), pr_result[thr]['R'], epoch)
# update target network
tqdm.write('[INFO]: update target dqn')
target_dqn.load_state_dict(dqn.state_dict())
if USE_TB:
writer.add_scalar('training/reward', sum(all_rewards), epoch * len(voc_loader) + it)
if it % args['display_intervals'] == 0:
tqdm.write('[{}][{}] \n rewards {}:{} \n actions {}'.format(epoch, it, sum(all_rewards),
all_rewards, all_actions))
save_model(dqn, optimizer, args['total_epochs'], 0)
if USE_TB:
writer.close()
if __name__ == '__main__':
training_args = set_args()
train(training_args)