forked from cyclops-community/ctf
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsparse_mp3.cxx
337 lines (290 loc) · 9.61 KB
/
sparse_mp3.cxx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
/** \addtogroup examples
* @{
* \defgroup sparse_mp3 sparse_mp3
* @{
* \brief Third-order Moller-Plesset petrubation theory (MP3) with sparse integrals. Equations adapted from those in Aquarius (credit to Devin Matthews)
*/
#include <ctf.hpp>
#include <float.h>
using namespace CTF;
struct dpair {
double a, b;
dpair(){ a=0.0; b=0.0; }
dpair(double a_, double b_){ a=a_, b=b_;}
dpair operator+(dpair const & p) const { return dpair(a+p.a, b+p.b); }
};
namespace CTF {
template <>
inline void Set<dpair>::print(char const * p, FILE * fp) const {
fprintf(fp,"(a=%lf b=%lf)",((dpair*)p)->a, ((dpair*)p)->b);
}
}
void divide_EaEi(Tensor<> & Ea,
Tensor<> & Ei,
Tensor<> & T,
bool sparse_T){
if (!sparse_T){
Tensor<> D(4,T.lens,*T.wrld);
D["abij"] += Ei["i"];
D["abij"] += Ei["j"];
D["abij"] -= Ea["a"];
D["abij"] -= Ea["b"];
Transform<> div([](double & b){ b=1./b; });
div(D["abij"]);
T["abij"] = T["abij"]*D["abij"];
} else {
Tensor<dpair> TD(4,sparse_T,T.lens,*T.wrld,Monoid<dpair,false>(dpair(0.0,0.0)));
TD["abij"] = Function<double,dpair>(
[](double d){
return dpair(d,0.0);
})(T["abij"]);
Transform<double,dpair> badd(
[](double d, dpair & p){
return p.b += d;
});
badd(Ei["i"],TD["abij"]);
badd(Ei["j"],TD["abij"]);
Transform<double,dpair> bsub(
[](double d, dpair & p){
return p.b -= d;
});
bsub(Ea["a"],TD["abij"]);
bsub(Ea["b"],TD["abij"]);
T["abij"] = Function<dpair,double>(
[](dpair p){
return p.a/p.b;
})(TD["abij"]);
}
}
double mp3(Tensor<> & Ea,
Tensor<> & Ei,
Tensor<> & Fab,
Tensor<> & Fij,
Tensor<> & Vabij,
Tensor<> & Vijab,
Tensor<> & Vabcd,
Tensor<> & Vijkl,
Tensor<> & Vaibj,
bool sparse_T){
Tensor<> T(4,sparse_T,Vabij.lens,*Vabij.wrld);
T["abij"] = Vabij["abij"];
divide_EaEi(Ea, Ei, T, sparse_T);
Tensor<> Z(4,Vabij.lens,*Vabij.wrld);
Z["abij"] = Vijab["ijab"];
Z["abij"] += Fab["af"]*T["fbij"];
Z["abij"] -= Fij["ni"]*T["abnj"];
Z["abij"] += 0.5*Vabcd["abef"]*T["efij"];
Z["abij"] += 0.5*Vijkl["mnij"]*T["abmn"];
Z["abij"] += Vaibj["amei"]*T["ebmj"];
divide_EaEi(Ea, Ei, Z, 0);
double MP3_energy = Z["abij"]*Vabij["abij"];
return MP3_energy;
}
int sparse_mp3(int nv, int no, World & dw, double sp=.8, bool test=1, int niter=0, bool bnd=1, bool bns=1, bool sparse_T=1){
int vvvv[] = {nv,nv,nv,nv};
int vovo[] = {nv,no,nv,no};
int vvoo[] = {nv,nv,no,no};
int oovv[] = {no,no,nv,nv};
int oooo[] = {no,no,no,no};
srand48(dw.rank);
Vector<> Ea(nv,dw);
Vector<> Ei(no,dw);
Ea.fill_random(1.0*nv*nv,2.0*nv*nv);
Ei.fill_random(-2.0*no*no,-1.0*no*no);
Matrix<> Fab(nv,nv,dw);
Matrix<> Fij(no,no,dw);
Fab.fill_random(-1.0,1.0);
Fij.fill_random(-1.0,1.0);
Tensor<> Vabij(4,vvoo,dw);
Tensor<> Vijab(4,oovv,dw);
Tensor<> Vabcd(4,vvvv,dw);
Tensor<> Vijkl(4,oooo,dw);
Tensor<> Vaibj(4,vovo,dw);
Vabij.fill_random(-1.0,1.0);
Vijab.fill_random(-1.0,1.0);
Vabcd.fill_random(-1.0,1.0);
Vijkl.fill_random(-1.0,1.0);
Vaibj.fill_random(-1.0,1.0);
Transform<> fltr([=](double & d){ if (fabs(d)<sp) d=0.0; });
fltr(Vabij["abij"]);
fltr(Vijab["ijab"]);
fltr(Vabcd["abcd"]);
fltr(Vijkl["ijkl"]);
fltr(Vaibj["aibj"]);
double dense_energy, sparse_energy;
if (test){
dense_energy = mp3(Ea, Ei, Fab, Fij, Vabij, Vijab, Vabcd, Vijkl, Vaibj, 0);
#ifndef TEST_SUITE
if (dw.rank == 0)
printf("Calculated MP3 energy %lf with dense integral tensors.\n",dense_energy);
#endif
} else
dense_energy = 0.0;
#ifndef TEST_SUITE
double min_time = DBL_MAX;
double max_time = 0.0;
double tot_time = 0.0;
double times[niter];
if (bnd){
if (dw.rank == 0){
printf("Starting %d benchmarking iterations of dense MP3...\n", niter);
}
Timer_epoch dmp3("dense MP3");
dmp3.begin();
for (int i=0; i<niter; i++){
double start_time = MPI_Wtime();
mp3(Ea, Ei, Fab, Fij, Vabij, Vijab, Vabcd, Vijkl, Vaibj, 0);
double end_time = MPI_Wtime();
double iter_time = end_time-start_time;
times[i] = iter_time;
tot_time += iter_time;
if (iter_time < min_time) min_time = iter_time;
if (iter_time > max_time) max_time = iter_time;
}
dmp3.end();
if (dw.rank == 0){
printf("Completed %d benchmarking iterations of dense MP3 (no=%d nv=%d sp=%lf).\n", niter, no, nv, sp);
printf("All iterations times: ");
for (int i=0; i<niter; i++){
printf("%lf ", times[i]);
}
printf("\n");
std::sort(times,times+niter);
printf("Dense MP3 (no=%d nv=%d sp=%lf p=%d) Min time = %lf, Avg time = %lf, Med time = %lf, Max time = %lf\n",no,nv,sp,dw.np,min_time,tot_time/niter, times[niter/2], max_time);
}
}
#endif
Vabcd.sparsify();
Vabij.sparsify();
Vabcd.sparsify();
Vijkl.sparsify();
Vaibj.sparsify();
if (test)
sparse_energy = mp3(Ea, Ei, Fab, Fij, Vabij, Vijab, Vabcd, Vijkl, Vaibj, sparse_T);
else
sparse_energy = 0.0;
bool pass;
if (test){
pass = fabs((dense_energy-sparse_energy)/dense_energy)<1.E-6;
if (Ea.wrld->rank == 0){
if (!sparse_T){
if (pass)
printf("{ third-order Moller-Plesset petrubation theory (MP3) using sparse*dense } passed \n");
else
printf("{ third-order Moller-Plesset petrubation theory (MP3) using sparse*dense } failed \n");
} else {
if (pass)
printf("{ third-order Moller-Plesset petrubation theory (MP3) using sparse*sparse } passed \n");
else
printf("{ third-order Moller-Plesset petrubation theory (MP3) using sparse*sparse } failed \n");
}
}
#ifndef TEST_SUITE
if (dw.rank == 0)
printf("Calcluated MP3 energy %lf with sparse integral tensors.\n",sparse_energy);
#endif
} else pass = 1;
#ifndef TEST_SUITE
if (bns){
if (dw.rank == 0){
printf("Starting %d benchmarking iterations of sparse MP3...\n", niter);
}
min_time = DBL_MAX;
max_time = 0.0;
tot_time = 0.0;
Timer_epoch smp3("sparse MP3");
smp3.begin();
for (int i=0; i<niter; i++){
double start_time = MPI_Wtime();
mp3(Ea, Ei, Fab, Fij, Vabij, Vijab, Vabcd, Vijkl, Vaibj, sparse_T);
double end_time = MPI_Wtime();
double iter_time = end_time-start_time;
#ifdef TUNE
CTF_int::update_all_models(dw.cdt.cm);
#endif
times[i] = iter_time;
tot_time += iter_time;
if (iter_time < min_time) min_time = iter_time;
if (iter_time > max_time) max_time = iter_time;
}
smp3.end();
if (dw.rank == 0){
printf("Completed %d benchmarking iterations of sparse MP3 (no=%d nv=%d).\n", niter, no, nv);
printf("All iterations times: ");
for (int i=0; i<niter; i++){
printf("%lf ", times[i]);
}
printf("\n");
std::sort(times,times+niter);
printf("Sparse MP3 (no=%d nv=%d sp=%lf p=%d spT=%d) Min time = %lf, Avg time = %lf, Med time = %lf, Max time = %lf\n",no,nv,sp,dw.np,sparse_T,min_time,tot_time/niter, times[niter/2], max_time);
}
}
#endif
return pass;
}
#ifndef TEST_SUITE
char* getCmdOption(char ** begin,
char ** end,
const std::string & option){
char ** itr = std::find(begin, end, option);
if (itr != end && ++itr != end){
return *itr;
}
return 0;
}
int main(int argc, char ** argv){
int rank, np, nv, no, pass, niter, bnd, bns, test;
bool sparse_T;
double sp;
int const in_num = argc;
char ** input_str = argv;
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &np);
if (getCmdOption(input_str, input_str+in_num, "-nv")){
nv = atoi(getCmdOption(input_str, input_str+in_num, "-nv"));
if (nv < 0) nv = 7;
} else nv = 7;
if (getCmdOption(input_str, input_str+in_num, "-no")){
no = atoi(getCmdOption(input_str, input_str+in_num, "-no"));
if (no < 0) no = 7;
} else no = 7;
if (getCmdOption(input_str, input_str+in_num, "-sp")){
sp = atof(getCmdOption(input_str, input_str+in_num, "-sp"));
if (sp < 0.0 || sp > 1.0) sp = .8;
} else sp = .8;
if (getCmdOption(input_str, input_str+in_num, "-niter")){
niter = atof(getCmdOption(input_str, input_str+in_num, "-niter"));
if (niter < 0) niter = 10;
} else niter = 10;
if (getCmdOption(input_str, input_str+in_num, "-sparse_T")){
sparse_T = (bool)atoi(getCmdOption(input_str, input_str+in_num, "-sparse_T"));
} else sparse_T = 1;
if (getCmdOption(input_str, input_str+in_num, "-bnd")){
bnd = atoi(getCmdOption(input_str, input_str+in_num, "-bnd"));
if (bnd != 0 && bnd != 1) bnd = 0;
} else bnd = 0;
if (getCmdOption(input_str, input_str+in_num, "-bns")){
bns = atoi(getCmdOption(input_str, input_str+in_num, "-bns"));
if (bns != 0 && bns != 1) bns = 0;
} else bns = 0;
if (getCmdOption(input_str, input_str+in_num, "-test")){
test = atoi(getCmdOption(input_str, input_str+in_num, "-test"));
if (test != 0 && test != 1) test = 1;
} else test = 1;
if (rank == 0){
printf("Running sparse (%lf zeros) third-order Moller-Plesset petrubation theory (MP3) method on %d virtual and %d occupied orbitals and T sparsity turned ot %d\n",sp,nv,no,sparse_T);
}
{
World dw;
pass = sparse_mp3(nv, no, dw, sp, test, niter, bnd, bns, sparse_T);
assert(pass);
}
MPI_Finalize();
return 0;
}
/**
* @}
* @}
*/
#endif