-
Notifications
You must be signed in to change notification settings - Fork 40
/
Copy pathextract_features.py
314 lines (263 loc) · 11.6 KB
/
extract_features.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Extract pre-computed feature vectors from BERT."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import codecs
import collections
import json
import logging
import re
import modeling
import tokenization
import tensorflow as tf
from distutils.util import strtobool
import chainer
from chainer import functions as F
from chainer import training
from chainer.training import extensions
import numpy as np
_logger = logging.getLogger(__name__)
def get_arguments():
parser = argparse.ArgumentParser(description='Arxiv')
# Required parameters
parser.add_argument('--input_file', required=True)
parser.add_argument('--output_file', required=True)
parser.add_argument('--layers', default='-1,-2,-3,-4', required=True)
parser.add_argument(
'--init_checkpoint', '--load_model_file', required=True,
help="Initial checkpoint (usually from a pre-trained BERT model)."
" The model array file path.")
parser.add_argument(
'--bert_config_file', required=True,
help="The config json file corresponding to the pre-trained BERT model. This specifies the model architecture.")
parser.add_argument(
'--vocab_file', required=True,
help="The vocabulary file that the BERT model was trained on.")
parser.add_argument(
'--gpu', '-g', type=int, default=0,
help="The id of gpu device to be used [0-]. If -1 is given, cpu is used.")
# Other parameters
parser.add_argument(
'--do_lower_case', type=strtobool, default='True',
help="Whether to lower case the input text. Should be True for uncased models and False for cased models.")
parser.add_argument(
'--max_seq_length', type=int, default=128,
help="The maximum total input sequence length after WordPiece tokenization. Sequences longer than this will be truncated, and sequences shorter than this will be padded.")
parser.add_argument(
'--batch_size', type=int, default=32,
help="Batch size for predictions.")
# These args are NOT used in this port.
parser.add_argument('--use_tpu', type=strtobool, default='False')
parser.add_argument('--tpu_name')
parser.add_argument('--tpu_zone')
parser.add_argument('--gcp_project')
parser.add_argument('--master')
parser.add_argument('--num_tpu_cores', type=int, default=8)
args = parser.parse_args()
return args
FLAGS = get_arguments()
class InputExample(object):
def __init__(self, unique_id, text_a, text_b):
self.unique_id = unique_id
self.text_a = text_a
self.text_b = text_b
class InputFeatures(object):
"""A single set of features of data."""
def __init__(self, unique_id, tokens, input_ids, input_mask, input_type_ids):
self.unique_id = unique_id
self.tokens = tokens
self.input_ids = np.array(input_ids, 'i')
self.input_mask = np.array(input_mask, 'i')
self.input_type_ids = np.array(input_type_ids, 'i')
def make_batch(features, gpu):
"""Creates a concatenated batch from a list of data and to_gpu."""
all_input_ids = []
all_input_mask = []
all_input_type_ids = []
for feature in features:
all_input_ids.append(feature.input_ids)
all_input_mask.append(feature.input_mask)
all_input_type_ids.append(feature.input_type_ids)
def stack_and_to_gpu(data_list):
sdata = F.pad_sequence(
data_list, length=None, padding=0).array
return chainer.dataset.to_device(gpu, sdata)
batch_input_ids = stack_and_to_gpu(all_input_ids).astype('i')
batch_input_mask = stack_and_to_gpu(all_input_mask).astype('f')
batch_input_type_ids = stack_and_to_gpu(all_input_type_ids).astype('i')
return {'input_ids': batch_input_ids,
'input_mask': batch_input_mask,
'input_type_ids': batch_input_type_ids, }
def convert_examples_to_features(examples, seq_length, tokenizer):
"""Loads a data file into a list of `InputBatch`s."""
features = []
for (ex_index, example) in enumerate(examples):
tokens_a = tokenizer.tokenize(example.text_a)
tokens_b = None
if example.text_b:
tokens_b = tokenizer.tokenize(example.text_b)
if tokens_b:
# Modifies `tokens_a` and `tokens_b` in place so that the total
# length is less than the specified length.
# Account for [CLS], [SEP], [SEP] with "- 3"
_truncate_seq_pair(tokens_a, tokens_b, seq_length - 3)
else:
# Account for [CLS] and [SEP] with "- 2"
if len(tokens_a) > seq_length - 2:
tokens_a = tokens_a[0:(seq_length - 2)]
# The convention in BERT is:
# (a) For sequence pairs:
# tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
# type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1
# (b) For single sequences:
# tokens: [CLS] the dog is hairy . [SEP]
# type_ids: 0 0 0 0 0 0 0
#
# Where "type_ids" are used to indicate whether this is the first
# sequence or the second sequence. The embedding vectors for `type=0` and
# `type=1` were learned during pre-training and are added to the wordpiece
# embedding vector (and position vector). This is not *strictly* necessary
# since the [SEP] token unambiguously separates the sequences, but it makes
# it easier for the model to learn the concept of sequences.
#
# For classification tasks, the first vector (corresponding to [CLS]) is
# used as as the "sentence vector". Note that this only makes sense because
# the entire model is fine-tuned.
tokens = []
input_type_ids = []
tokens.append("[CLS]")
input_type_ids.append(0)
for token in tokens_a:
tokens.append(token)
input_type_ids.append(0)
tokens.append("[SEP]")
input_type_ids.append(0)
if tokens_b:
for token in tokens_b:
tokens.append(token)
input_type_ids.append(1)
tokens.append("[SEP]")
input_type_ids.append(1)
input_ids = tokenizer.convert_tokens_to_ids(tokens)
# The mask has 1 for real tokens and 0 for padding tokens. Only real
# tokens are attended to.
input_mask = [1] * len(input_ids)
features.append(
InputFeatures(
unique_id=example.unique_id,
tokens=tokens,
input_ids=input_ids,
input_mask=input_mask,
input_type_ids=input_type_ids))
return features
def _truncate_seq_pair(tokens_a, tokens_b, max_length):
"""Truncates a sequence pair in place to the maximum length."""
# This is a simple heuristic which will always truncate the longer sequence
# one token at a time. This makes more sense than truncating an equal percent
# of tokens from each, since if one sequence is very short then each token
# that's truncated likely contains more information than a longer sequence.
while True:
total_length = len(tokens_a) + len(tokens_b)
if total_length <= max_length:
break
if len(tokens_a) > len(tokens_b):
tokens_a.pop()
else:
tokens_b.pop()
def read_examples(input_file):
"""Read a list of `InputExample`s from an input file."""
examples = []
unique_id = 0
# with tf.gfile.GFile(input_file, "r") as reader:
with open(input_file, "r") as reader:
while True:
line = tokenization.convert_to_unicode(reader.readline())
if not line:
break
line = line.strip()
text_a = None
text_b = None
m = re.match(r"^(.*) \|\|\| (.*)$", line)
if m is None:
text_a = line
else:
text_a = m.group(1)
text_b = m.group(2)
examples.append(
InputExample(unique_id=unique_id, text_a=text_a, text_b=text_b))
unique_id += 1
return examples
def main():
layer_indexes = [int(x) for x in FLAGS.layers.split(",")]
bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file)
tokenizer = tokenization.FullTokenizer(
vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case)
bert = modeling.BertModel(config=bert_config)
model = modeling.BertExtracter(bert)
ignore_names = ['output/W', 'output/b']
chainer.serializers.load_npz(
FLAGS.init_checkpoint, model,
ignore_names=ignore_names)
if FLAGS.gpu >= 0:
chainer.backends.cuda.get_device_from_id(FLAGS.gpu).use()
model.to_gpu()
examples = read_examples(input_file=FLAGS.input_file)
features = convert_examples_to_features(
examples, FLAGS.max_seq_length, tokenizer)
iterator = chainer.iterators.SerialIterator(
features, FLAGS.batch_size,
repeat=False, shuffle=False)
# converter = converter(is_training=False)
unique_id_to_feature = {}
for feature in features:
unique_id_to_feature[feature.unique_id] = feature
# with codecs.getwriter("utf-8")(open(FLAGS.output_file, "w")) as writer:
with open(FLAGS.output_file, "w") as writer:
for prebatch in iterator:
unique_ids = [f.unique_id for f in prebatch]
batch = make_batch(prebatch, FLAGS.gpu)
with chainer.no_backprop_mode(), chainer.using_config('train', False):
encoder_layers = model.get_all_encoder_layers(
input_ids=batch['input_ids'],
input_mask=batch['input_mask'],
token_type_ids=batch['input_type_ids'])
encoder_layers = [layer.array.tolist() for layer in encoder_layers]
for b in range(len(prebatch)): # batchsize loop
unique_id = unique_ids[b]
feature = unique_id_to_feature[unique_id]
output_json = collections.OrderedDict()
output_json["linex_index"] = unique_id
all_features = []
for (i, token) in enumerate(feature.tokens):
all_layers = []
for (j, layer_index) in enumerate(layer_indexes):
layer_output = encoder_layers[layer_index][b]
layers = collections.OrderedDict()
layers["index"] = layer_index
layers["values"] = [
round(float(x), 6) for x in layer_output[i]
]
all_layers.append(layers)
features = collections.OrderedDict()
features["token"] = token
features["layers"] = all_layers
all_features.append(features)
output_json["features"] = all_features
writer.write(json.dumps(output_json) + "\n")
if __name__ == "__main__":
main()