-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset.py
221 lines (179 loc) · 7.77 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import os
import random
import numpy as np
import pandas as pd
import torch
from torch.utils.data import Dataset, DataLoader
from skimage.transform import resize
from sklearn.model_selection import train_test_split
import imageio
import scipy.ndimage as ndimage
from skimage.filters import threshold_otsu
# SSL pretrain dataset
class DatasetSSL(Dataset):
def __init__(self, data_path = None, df = None, ptsz = 32):
super(DatasetSSL, self).__init__()
self.data_path = data_path
self.transformations = transforms.Compose([transforms.RandomApply([transforms.ColorJitter(0.25, 0.25, 0.2, 0.2)],p = 0.5),
transforms.RandomApply([transforms.RandomAffine(5, (0.1,0.1), (1.0,1.25))], p=0.2),
transforms.RandomResizedCrop(224, scale = (0.9,1.0)),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
self.df = df
self.ptsz = ptsz
def __len__(self):
return len(self.df)
def __getpatches__(self, x):
pts = []
#print(x.shape)
#x = resize(x, (224,224), preserve_range = True)
#print(x.shape)
H,W,C = x.shape
numdelH = 224//(self.ptsz//2) - 1
numdelW = 224//(self.ptsz//2) - 1
for i in range(numdelH):
for j in range(numdelW):
sx = i*(self.ptsz//2)
ex = sx + self.ptsz
sy = j*(self.ptsz//2)
ey = sy + self.ptsz
#print(sx,ex,sy,ey)
temp = x[sx:ex,sy:ey,:]
temp = np.transpose(temp, (2,0,1))
temp = torch.from_numpy(temp)
#print(temp.shape)
pts.append(torch.unsqueeze(temp, 0))
return torch.cat(pts, dim = 0)
def __get_com_cropped__(self, image):
'''image is a binary PIL image'''
thresh = threshold_otsu(image[:,:,0])
image2 = image > thresh
#plt.imshow(np.asarray(image2).astype(np.float))
com = ndimage.measurements.center_of_mass(image2)
com = np.round(com)
com[0] = np.clip(com[0], 0, image.shape[0])
com[1] = np.clip(com[1], 0, image.shape[1])
X_center, Y_center = int(com[0]), int(com[1])
c_row, c_col = image[X_center, :, 0], image[:, Y_center, 0]
x_start, x_end, y_start, y_end = -1, -1, -1, -1
for i, v in enumerate(c_col):
v = np.sum(image2[i, :, 0])
if v < image.shape[1]: # there exists text pixel
if x_start == -1:
x_start = i
else:
x_end = i
for j, v in enumerate(c_row):
v = np.sum(image2[:, j, 0])
if v < image.shape[0]: # there exists text pixel
if y_start == -1:
y_start = j
else:
y_end = j
crop_rgb = image[x_start:x_end, y_start:y_end, :] #)).convert('RGB')
return crop_rgb
def __augment__(self,x):
x1, x2 = self.transformations(x), self.transformations(x)
return x1, x2
def __getitem__(self, idx):
#writer = self.df['writer'].iloc[idx]
orgpic = cv.imread(self.df.iloc[idx]['filepath'])
orgpic = orgpic/255.0
orgpic = self.__get_com_cropped__(orgpic)
#plt.imshow(orgpic)
orgpic = resize(orgpic, (224,224), preserve_range = True)
orgpic = np.transpose(orgpic, (2,0,1))
orgpic = torch.from_numpy(orgpic).float()
orgpic1, orgpic2 = self.__augment__(orgpic)
orgpic1 = orgpic1.numpy().transpose(1,2,0)
orgpic2 = orgpic2.numpy().transpose(1,2,0)
orgpic1pts = self.__getpatches__(orgpic1)
orgpic2pts = self.__getpatches__(orgpic2)
#print(orgpic1pts.shape)
return orgpic1pts, orgpic2pts
def get_dataloader_train(args, train_df):
ds = DatasetSSL(data_path=args.datapath, df=train_df, ptsz=args.ptsz)
dl = DataLoader(ds, batch_size=args.batchsize, drop_last=True, shuffle=True)
return dl
# downstream dataset
class DatasetDownstream(Dataset):
def __init__(self, df=None, ptsz=32):
super(DatasetDownstream, self).__init__()
self.df = df
self.ptsz = ptsz
self.centercrop = transforms.CenterCrop(224)
def __len__(self):
return len(self.df)
def __getpatches__(self, x):
pts = []
#print(x.shape)
#x = self.centercrop(torch.from_numpy(x)).numpy()
#print(x.shape)
H,W,C = x.shape
numdelH = 224//(self.ptsz//2) - 1
numdelW = 224//(self.ptsz//2) - 1
for i in range(numdelH):
for j in range(numdelW):
sx = i*(self.ptsz//2)
ex = sx + self.ptsz
sy = j*(self.ptsz//2)
ey = sy + self.ptsz
#print(sx,ex,sy,ey)
temp = x[:,sx:ex,sy:ey]
#temp = np.transpose(temp, (2,0,1))
temp = torch.from_numpy(temp)
#print(temp.shape)
pts.append(torch.unsqueeze(temp, 0))
return torch.cat(pts, dim = 0)
def __get_com_cropped__(self, image):
'''image is a binary PIL image'''
thresh = threshold_otsu(image[:,:,0])
image2 = image > thresh
#plt.imshow(np.asarray(image2).astype(np.float))
com = ndimage.measurements.center_of_mass(image2)
com = np.round(com)
com[0] = np.clip(com[0], 0, image.shape[0])
com[1] = np.clip(com[1], 0, image.shape[1])
X_center, Y_center = int(com[0]), int(com[1])
c_row, c_col = image[X_center, :, 0], image[:, Y_center, 0]
x_start, x_end, y_start, y_end = -1, -1, -1, -1
for i, v in enumerate(c_col):
v = np.sum(image2[i, :, 0])
if v < image.shape[1]: # there exists text pixel
if x_start == -1:
x_start = i
else:
x_end = i
for j, v in enumerate(c_row):
v = np.sum(image2[:, j, 0])
if v < image.shape[0]: # there exists text pixel
if y_start == -1:
y_start = j
else:
y_end = j
#print(x_start, y_start, x_end, y_end)
crop_rgb = image[x_start:x_end, y_start:y_end, :] #)).convert('RGB')
return crop_rgb
def __getitem__(self, idx):
pic = cv.imread(self.df.iloc[idx]['filepath'])
#pic = 1 - pic #np.transpose(pic, (2,0,1))
x = resize(pic, (256,256), preserve_range = True)
#x = x[32:x.shape[0]-32,32:x.shape[1]-32,:]
#print(x.shape)
#x = np.transpose(x, (2,0,1))
x = x/255.0
x = self.__get_com_cropped__(x)
x = resize(x, (224,224), preserve_range = True)
#x = self.centercrop(torch.from_numpy(x)).numpy()
#x = self.__get_com_cropped__(x)
#x = resize(x, (224,224), preserve_range = True)
x = (-0.5 + x)/0.5
x = np.transpose(x, (2,0,1))
writer = self.df.iloc[idx]['writer']
picpts = self.__getpatches__(x)
return picpts, self.df['label'].iloc[idx], writer
def get_dataloader_ds(args, train_df, test_df):
tds, vds = DatasetDownstream(train_df, args.ptsz), DatasetDownstream(test_df, args.ptsz)
tdl = torch.utils.data.DataLoader(tds, batch_size=1, drop_last=True, shuffle=True)
vdl = torch.utils.data.DataLoader(vds, batch_size=1, drop_last=True, shuffle=True)
return tdl, vdl